Akinyemi AJ, Miah MR, Ijomone OM, Tsatsakis A, Soares FAA, Tinkov AA et al (2019) Lead (Pb) exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans: involvement of the dopamine transporter. Toxicol Rep 6:833–840. https://doi.org/10.1016/j.toxrep.2019.08.001
Alvarez J, Alvarez-Illera P, García-Casas P, Fonteriz RI, Montero M (2020) The role of Ca2+ signaling in aging and neurodegeneration: insights from Caenorhabditis elegans models. Cells 9:204. https://doi.org/10.3390/cells9010204
Article CAS PubMed PubMed Central Google Scholar
Anand N, Holcom A, Broussalian M, Schmidt M, Chinta SJ, Lithgow GJ et al (2020) Dysregulated iron metabolism in C. elegans catp-6/ATP13A2 mutant impairs mitochondrial function. Neurobiol Dis 139:104786. https://doi.org/10.1016/j.nbd.2020.104786
Bae E-J, Kim D-K, Kim C, Mante M, Adame A, Rockenstein E et al (2018) LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation. Nat Commun 9:3465. https://doi.org/10.1038/s41467-018-05958-z
Article ADS CAS PubMed PubMed Central Google Scholar
Baesler J, Kopp JF, Pohl G, Aschner M, Haase H, Schwerdtle T et al (2019) Zn homeostasis in genetic models of Parkinson’s disease in Caenorhabditis elegans. J Trace Elem Med Biol 55:44–49. https://doi.org/10.1016/j.jtemb.2019.05.005
Article CAS PubMed PubMed Central Google Scholar
Beilina A, Bonet-Ponce L, Kumaran R, Kordich JJ, Ishida M, Mamais A et al (2020) The Parkinson’s disease protein LRRK2 interacts with the GARP complex to promote retrograde transport to the trans-Golgi network. Cell Rep 31:107614. https://doi.org/10.1016/j.celrep.2020.107614
Article CAS PubMed PubMed Central Google Scholar
Boos JR, Shubbar A, Geldenhuys WJ (2021) Dual monoamine oxidase B and acetylcholine esterase inhibitors for treating movement and cognition deficits in a C. elegans model of Parkinson’s disease. Med Chem Res 30:1166–1174. https://doi.org/10.1007/s00044-021-02720-x
Brunetti G, Di Rosa G, Scuto M, Leri M, Stefani M, Schmitz-Linneweber C et al (2020) Healthspan maintenance and prevention of Parkinson’s-like phenotypes with hydroxytyrosol and oleuropein aglycone in C. elegans. Int J Mol Sci 21:2588. https://doi.org/10.3390/ijms21072588
Caldwell K, Thies J, Caldwell G (2018) No country for old worms: a systematic review of the application of C. elegans to investigate a bacterial source of environmental neurotoxicity in Parkinson’s disease. Metabolites 8:70. https://doi.org/10.3390/metabo8040070
Caldwell KA, Willicott CW, Caldwell GA (2020) Modeling neurodegeneration in Caenorhabditis elegans. Dis Model Mech 13. https://doi.org/10.1242/dmm.046110
Carrete H Jr (2017) Parkinson’s disease and atypical parkinsonism: the importance of magnetic resonance imaging as a potential biomarker. Radiol Bras 50:5–6. https://doi.org/10.1590/0100-3984.2017.50.4e1
Cascella R, Perni M, Chen SW, Fusco G, Cecchi C, Vendruscolo M et al (2019) Probing the origin of the toxicity of oligomeric aggregates of α-synuclein with antibodies. ACS Chem Biol 14:1352–1362. https://doi.org/10.1021/acschembio.9b00312
Article CAS PubMed PubMed Central Google Scholar
Chalorak P, Jattujan P, Nobsathian S, Poomtong T, Sobhon P, Meemon K (2018) Holothuria scabra extracts exhibit anti-Parkinson potential in C. elegans: A model for anti-Parkinson testing. Nutr Neurosci 21:427–438. https://doi.org/10.1080/1028415X.2017.1299437
Chalorak P, Sanguanphun T, Limboonreung T, Meemon K (2021a) Neurorescue effects of frondoside A and ginsenoside Rg3 in C. elegans model of Parkinson’s disease. Molecules 26:4843. https://doi.org/10.3390/molecules26164843
Chalorak P, Sornkaew N, Manohong P, Niamnont N, Malaiwong N, Limboonreung T et al (2021b) Diterpene glycosides from Holothuria scabra exert the α-synuclein degradation and neuroprotection against α-synuclein-Mediated neurodegeneration in C. elegans model. J Ethnopharmacol 279:114347. https://doi.org/10.1016/j.jep.2021.114347
Chandler RJ, Cogo S, Lewis PA, Kevei E (2021) Modelling the functional genomics of Parkinson’s disease in Caenorhabditis elegans: LRRK2 and beyond. Biosci Rep 41. https://doi.org/10.1042/BSR20203672
Chang CH, Wei CC, Ho CT, Liao VHC (2021) N-γ-(L-glutamyl)-L-selenomethionine shows neuroprotective effects against Parkinson’s disease associated with SKN-1/Nrf2 and TRXR-1 in Caenorhabditis elegans. Phytomedicine 92:153733. https://doi.org/10.1016/j.phymed.2021.153733
Chen KS, Menezes K, Rodgers JB, O’Hara DM, Tran N, Fujisawa K et al (2021) Small molecule inhibitors of α-synuclein oligomers identified by targeting early dopamine-mediated motor impairment in C. elegans. Mol Neurodegener 16:77. https://doi.org/10.1186/s13024-021-00497-6
Chen Q-X, Zhou L, Long T, Qin D-L, Wang Y-L, Ye Y et al (2022) Galangin exhibits neuroprotective effects in 6-OHDA-induced models of Parkinson’s disease via the Nrf2/Keap1 pathway. Pharmaceuticals 15:1014. https://doi.org/10.3390/ph15081014
Article CAS PubMed PubMed Central Google Scholar
Cheon S-M, Jang I, Lee M-H, Kim DK, Jeon H, Cha DS (2017) Sorbus alnifolia protects dopaminergic neurodegeneration in Caenorhabditis elegans. Pharm Biol 55:481–486. https://doi.org/10.1080/13880209.2016.1251468
Chia SJ, Tan E-K, Chao Y-X (2020) Historical perspective: models of Parkinson’s disease. Int J Mol Sci 21:2464. https://doi.org/10.3390/ijms21072464
Article CAS PubMed PubMed Central Google Scholar
Cooper JF, Van Raamsdonk JM (2018) Modeling Parkinson’s disease in C. elegans. J Parkinsons Dis 8:17–32. https://doi.org/10.3233/JPD-171258
Cooper JF, Machiela E, Dues DJ, Spielbauer KK, Senchuk MM, Van Raamsdonk JM (2017) Activation of the mitochondrial unfolded protein response promotes longevity and dopamine neuron survival in Parkinson’s disease models. Sci Rep 7:16441. https://doi.org/10.1038/s41598-017-16637-2
Article ADS CAS PubMed PubMed Central Google Scholar
Cooper JF, Spielbauer KK, Senchuk MM, Nadarajan S, Colaiácovo MP, Van Raamsdonk JM (2018) α-synuclein expression from a single copy transgene increases sensitivity to stress and accelerates neuronal loss in genetic models of Parkinson’s disease. Exp Neurol 310:58–69. https://doi.org/10.1016/j.expneurol.2018.09.001
Article CAS PubMed PubMed Central Google Scholar
Dhakal R, Yosofvand M, Yavari M, Abdulrahman R, Schurr R, Moustaid-Moussa N et al (2021) Review of biological effects of acute and chronic radiation exposure on Caenorhabditis elegans. Cells 10:1966. https://doi.org/10.3390/cells10081966
Article CAS PubMed PubMed Central Google Scholar
Doherty CPA, Ulamec SM, Maya-Martinez R, Good SC, Makepeace J, Khan GN et al (2020) A short motif in the N-terminal region of α-synuclein is critical for both aggregation and function. Nat Struct Mol Biol 27:249–259. https://doi.org/10.1038/s41594-020-0384-x
Article CAS PubMed PubMed Central Google Scholar
Dominguez-Meijide A, Parrales V, Vasili E, González-Lizárraga F, König A, Lázaro DF et al (2021) Doxycycline inhibits α-synuclein-associated pathologies in vitro and in vivo. Neurobiol Dis 151:105256. https://doi.org/10.1016/j.nbd.2021.105256
Article CAS PubMed Google Scholar
Gaeta A, Caldwell K, Caldwell G (2019) Found in translation: the utility of C. elegans alpha-synuclein models of Parkinson’s disease. Brain Sci 9:73. https://doi.org/10.3390/brainsci9040073
Garcia-Moreno JC, Porta de la Riva M, Martínez-Lara E, Siles E, Cañuelo A (2019) Tyrosol, a simple phenol from EVOO, targets multiple pathogenic mechanisms of neurodegeneration in a C. elegans model of Parkinson’s disease. Neurobiol Aging 82:60–68. https://doi.org/10.1016/j.neurobiolaging.2019.07.003
Giunti S, Andersen N, Rayes D, De Rosa MJ (2021) Drug discovery: insights from the invertebrate Caenorhabditis elegans. Pharmacol Res Perspect 9. https://doi.org/10.1002/prp2.721
Haque R, Shamsuzzama, Kumar L, Sharma T, Fatima S, Jadiya P et al (2020) Human insulin modulates α-synuclein aggregation via DAF-2/DAF-16 signalling pathway by antagonising DAF-2 receptor in C. elegans model of Parkinson’s disease. Oncotarget 11:634–649. https://doi.org/10.18632/oncotarget.27366
Hardenberg MC, Sinnige T, Casford S, Dada S, Poudel C, Robinson EA et al (2021) Observation of an α-synuclein liquid droplet state and its maturation into Lewy body-like assemblies. J Mol Cell Biol. https://doi.org/10.1093/jmcb/mjaa075
Article PubMed PubMed Central Google Scholar
Hartman JH, Gonzalez-Hunt C, Hall SM, Ryde IT, Caldwell KA, Caldwell GA et al (2019) Genetic defects in mitochondrial dynamics in Caenorhabditis elegans impact ultraviolet c radiation- and 6-hydroxydopamine-induced neurodegeneration. Int J Mol Sci 20:3202. https://doi.org/10.3390/ijms20133202
Article CAS PubMed PubMed Central Google Scholar
Hartmann NB, Hüffer T, Thompson RC, Hassellöv M, Verschoor A, Daugaard AE et al (2019) Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ Sci Technol 53:1039–1047. https://doi.org/10.1021/acs.est.8b05297
Article ADS CAS PubMed Google Scholar
He L, Du JJ, Zhou JJ, Chen MT, Luo L, Li BQ et al (2022) Synthesis of melatonin derivatives and the neuroprotective effects on Parkinson’s disease models of Caenorhabditis elegans. Front Chem 10. https://doi.org/10.3389/fchem.2022.918116
Hsu Y-L, Hung H-S, Tsai C-W, Liu S-P, Chiang Y-T, Kuo Y-H et al (2021) Peiminine reduces ARTS-Mediated Degradation of XIAP by Modulating the PINK1/parkin pathway to ameliorate 6-hydroxydopamine toxicity and α-synuclein accumulation in Parkinson’s disease models in vivo and in vitro. Int J Mol Sci 22:10240. https://doi.org/10.3390/ijms221910240
Article CAS PubMed PubMed Central Google Scholar
Huang X, Wang C, Chen L, Zhang T, Leung KL, Wong G (2021) Human amyloid beta and α-synuclein co-expression in neurons impair behavior and recapitulate features for Lewy body dementia in Caenorhabditis elegans. Biochim Biophys Acta Mol Basis Dis 1867:166203. https://doi.org/10.1016/j.bbadis.2021.166203
Hughes S, van Dop M, Kolsters N, van de Klashorst D, Pogosova A, Rijs AM (2022) Using a Caenorhabditis elegans Parkinson’s disease model to assess disease progression and therapy efficiency. Pharmaceuticals 15:512. https://doi.org/10.3390/ph15050512
Article CAS PubMed PubMed Central Google Scholar
Ji T, Zhang X, Xin Z, Xu B, Jin Z, Wu J et al (2020) Does perturbation in the mitochondrial protein folding pave the way for neurodegeneration diseases? Ageing Res Rev 57:100997. https://doi.org/10.1016/j.arr.2019.100997
Article CAS PubMed Google Scholar
Jiang Y, Gaur U, Cao Z, Hou S-T, Zheng W (2022) Dopamine D1- and D2-like receptors oppositely regulate lifespan via a dietary restriction mechanism in Caenorhabditis elegans. BMC Biol 20:71. https://doi.org/10.1186/s12915-022-01272-9
Article CAS PubMed PubMed Central Google Scholar
Johnson S, Park H, DaSilva N, Vattem D, Ma H, Seeram N (2018) Levodopa-reduced mucuna pruriens seed extract shows neuroprotective effects against Parkinson’s disease in murine microglia and human neuroblastoma cells, Caenorhabditis elegans, and drosophila melanogaster. Nutrients 10:1139. https://doi.org/10.3390/nu10091139
Article CAS PubMed PubMed Central Google Scholar
Johnson SL, Park HY, Vattem DA, Grammas P, Ma H, Seeram NP (2020) Equol, a Blood–brain barrier permeable gut microbial metabolite of dietary isoflavone daidzein, exhibits neuroprotective effects against neurotoxins induced toxicity in human neuroblastoma SH-SY5Y cells and Caenorhabditis elegans. Plant Foods Hum Nutr 75:512–517. https://doi.org/10.1007/s11130-020-00840-0
Article CAS PubMed Google Scholar
Kim S, Yang W, Cha DS, Han YT (2021) Synthesis of proposed structure of aaptoline A, a marine sponge-derived 7,8-dihydroxyquinoline, and its neuroprotective properties in C. elegans. Molecules 26:5964. https://doi.org/10.3390/molecules26195964
Lee SH, Han YT, Cha DS (2021) Neuroprotective effect of damaurone D in a C. elegans model of Parkinson’s disease. Neurosci Lett 747:135623. https://doi.org/10.1016/j.neulet.2021.135623
Lewy FH (1912) Paralysis agitans. I. Pathologische Anatomie. Lewandowsky’s Handbuch der Neurologie, 3. Band: Spez. Neurologie II. Springer, Berlin, pp 920–933
Li Y, Yang C, Wang S, Yang D, Zhang Y, Xu L et al (2020) Copper and iron ions accelerate the prion-like propagation of α-synuclein: a vicious cycle in Parkinson’s disease. Int J Biol Macromol 163:562–573. https://doi.org/10.1016/j.ijbiomac.2020.06.274
Comments (0)