Askri D, Ouni S, Galai S et al (2018) Intranasal instillation of iron oxide nanoparticles induces inflammation and perturbation of trace elements and neurotransmitters, but not behavioral impairment in rats. Environ Sci Pollut Res 25:16922–16932. https://doi.org/10.1007/s11356-018-1854-0
Askri D, Ouni S, Galai S et al (2019) Nanoparticles in foods? A multiscale physiopathological investigation of iron oxide nanoparticle effects on rats after an acute oral exposure: trace element biodistribution and cognitive capacities. Food Chem Toxicol 127:173–181. https://doi.org/10.1016/j.fct.2019.03.006
Article CAS PubMed Google Scholar
Bardestani A, Ebrahimpour S, Esmaeili A, Esmaeili A (2021) Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles. J Nanobiotechnology 19:1–33. https://doi.org/10.1186/s12951-021-01059-0
Bishop GM, Dang TN, Dringen R, Robinson SR (2011) Accumulation of non-transferrin-bound iron by neurons, astrocytes, and microglia. Neurotox Res 19:443–541. https://doi.org/10.1007/s12640-010-9195-x
Article CAS PubMed Google Scholar
Bishop GM, Robinson SR (2001) Quantitative analysis of cell death and ferritin expression in response to cortical iron: implications for hypoxia-ischemia and stroke. Brain Res 907:175–187. https://doi.org/10.1016/S0006-8993(01)02303-4
Article CAS PubMed Google Scholar
Brosda J, Dietz F, Koch M (2011) Impairment of cognitive performance after reelin knockdown in the medial prefrontal cortex of pubertal or adult rats. Neurobiol Dis 44:239–247. https://doi.org/10.1016/j.nbd.2011.07.008
Chambers JM, Freeny AE, Heiberger RM (1992) Analysis of variance; designed experiments. In: Chambers J, Hastie T (eds) Statistical Models in S, 1st edn. Wadsworth & Brooks/Cole, New York, pp 1–49
Cheli VT, Correale J, Paez PM, Pasquini JM (2020) Iron metabolism in oligodendrocytes and astrocytes, implications for myelination and remyelination. ASN Neuro 12:1–15. https://doi.org/10.1177/1759091420962681
Connor JR, Menzies SL (1995) Cellular management of iron in the brain. J Neurol Sci 134:33–44. https://doi.org/10.1016/0022-510X(95)00206-H
Article CAS PubMed Google Scholar
de Oliveira GMT, de Oliveira EMN, Pereira TCB et al (2017) Implications of exposure to dextran-coated and uncoated iron oxide nanoparticles to developmental toxicity in zebrafish. J Nanoparticle Res 19:1–16. https://doi.org/10.1007/s11051-017-4074-5
Dhakshinamoorthy V, Manickam V, Perumal E (2017) Neurobehavioural toxicity of iron oxide nanoparticles in mice. Neurotox Res 32:187–203. https://doi.org/10.1007/s12640-017-9721-1
Article CAS PubMed Google Scholar
Fauconnier N, Pons JN, Roger J, Bee A (1997) Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J Colloid Interface Sci 194:427–433. https://doi.org/10.1006/jcis.1997.5125
Article ADS CAS PubMed Google Scholar
Florio TM, Scarnati E, Rosa I et al (2018) The basal ganglia : more than just a switching device. CNS Neurosci Ther 24:677–684. https://doi.org/10.1111/cns.12987
Gaharwar US, Meena R, Rajamani P (2019) Biodistribution, clearance and morphological alterations of intravenously administered iron oxide nanoparticles in male Wistar rats. Int J Nanomedicine 14:9677–9692. https://doi.org/10.2147/IJN.S223142
Article CAS PubMed PubMed Central Google Scholar
Galloway DA, Phillips AEM, Owen DRJ, Moore CS (2019) Phagocytosis in the brain: homeostasis and disease. Front Immunol 10:1–15. https://doi.org/10.3389/fimmu.2019.00790
Geppert M, Hohnholt M, Gaetjen L et al (2009) Accumulation of iron oxide nanoparticles by cultured brain astrocytes. J Biomed Nanotechnol 5:285–293. https://doi.org/10.1166/jbn.2009.1033
Article CAS PubMed Google Scholar
Geppert M, Hohnholt MC, Nürnberger S, Dringen R (2012) Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles. Acta Biomater 8:3832–3839. https://doi.org/10.1016/j.actbio.2012.06.029
Article CAS PubMed Google Scholar
Gould TD, Dao DT, Kovacsics CE (2009) The open field test. In: Gould TD (ed) Mood and anxiety related phenotypes in mice, 1st edn. Humana Press, Totowa, New Jersey, pp 1–20
Groenewegen HJ (2003) The basal ganglia and motor control. Neural Plast 10:107–120. https://doi.org/10.1155/NP.2003.107
Article PubMed PubMed Central Google Scholar
Hayn L, Koch M (2015) Suppression of excitotoxicity and foreign body response by memantine in chronic cannula implantation into the rat brain. Brain Res Bull 117:54–68. https://doi.org/10.1016/j.brainresbull.2015.08.001
Article CAS PubMed Google Scholar
Horst NK, Laubach M (2009) The role of rat dorsomedial prefrontal cortex in spatial working memory. Neuroscience 164:444–456. https://doi.org/10.1016/j.neuroscience.2009.08.004
Article CAS PubMed Google Scholar
Huang C, Ma W, Luo Q et al (2019) Iron overload resulting from the chronic oral administration of ferric citrate induces parkinsonism phenotypes in middle-aged mice. Aging (Albany NY) 11:9846–9861. https://doi.org/10.18632/aging.102433
Imam SZ, Lantz-McPeak SM, Cuevas E et al (2015) Iron oxide nanoparticles induce dopaminergic damage: in vitro pathways and in vivo imaging reveals mechanism of neuronal damage. Mol Neurobiol 52:913–926. https://doi.org/10.1007/s12035-015-9259-2
Article CAS PubMed Google Scholar
Irrsack E, Schuller J, Petters C et al (2021) Effects of local administration of iron oxide nanoparticles in the prefrontal cortex, striatum, and hippocampus of rats. Neurotox Res 39:2056–2071. https://doi.org/10.1007/s12640-021-00432-z
Article CAS PubMed PubMed Central Google Scholar
Kehr J, Yoshitake T, Ichinose F et al (2018) Effects of cariprazine on extracellular levels of glutamate, GABA, dopamine, noradrenaline and serotonin in the medial prefrontal cortex in the rat phencyclidine model of schizophrenia studied by microdialysis and simultaneous recordings of locomotor activity. Psychopharmacology 235:1593–1607. https://doi.org/10.1007/s00213-018-4874-z
Article CAS PubMed PubMed Central Google Scholar
Kim J, Wessling-Resnick M (2014) Iron and mechanisms of emotional behavior. J Nutr Biochem 25:1101–1107. https://doi.org/10.1016/j.jnutbio.2014.07.003
Article CAS PubMed PubMed Central Google Scholar
Kumari M, Rajak S, Singh SP et al (2013) Biochemical alterations induced by acute oral doses of iron oxide nanoparticles in Wistar rats. Drug Chem Toxicol 36:296–305. https://doi.org/10.3109/01480545.2012.720988
Article CAS PubMed Google Scholar
Lacroix L, Broersen LM, Weiner I, Feldon J (1998) The effects of excitotoxic lesion of the medial prefrontal cortex on latent inhibition, prepulse inhibition, food hoarding, elevated plus maze, active avoidance and locomotor activity in the rat. Neuroscience 84:431–442. https://doi.org/10.1016/S0306-4522(97)00521-6
Article CAS PubMed Google Scholar
Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108:2064–2110. https://doi.org/10.1021/cr068445e
Article CAS PubMed Google Scholar
Lenth RV (2022) Emmeans: estimated marginal means, aka least-squares means. R package version 1.7.2. In: https://CRAN.R-project.org/package=emmeans. Accessed 14 Apr 2023
Luther EM, Petters C, Bulcke F et al (2013) Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells. Acta Biomater 9:8454–8465. https://doi.org/10.1016/j.actbio.2013.05.022
Article CAS PubMed Google Scholar
Mai T, Hilt JZ (2019) Functionalization of iron oxide nanoparticles with small molecules and the impact on reactive oxygen species generation for potential cancer therapy. Colloids Surf A Physicochem Eng Asp 576:9–14. https://doi.org/10.1016/j.colsurfa.2019.05.003
Manickam V, Dhakshinamoorthy V, Perumal E (2018) Iron oxide nanoparticles induces cell cycle-dependent neuronal apoptosis in mice. J Mol Neurosci 64:352–362. https://doi.org/10.1007/s12031-018-1030-5
Article CAS PubMed Google Scholar
Manickam V, Dhakshinamoorthy V, Perumal E (2019) Iron oxide nanoparticles affects behaviour and monoamine levels in mice. Neurochem Res 44:1533–1548. https://doi.org/10.1007/s11064-019-02774-9
Article CAS PubMed Google Scholar
Martins ES, Espindola A, Britos TN et al (2021) Potential use of DMSA-containing iron oxide nanoparticles as magnetic vehicles against the covid-19 disease. ChemistrySelect 6:7931–7935. https://doi.org/10.1002/slct.202101900
Article CAS PubMed PubMed Central Google Scholar
Minigalieva IA, Ryabova YV, Shelomencev IG et al (2023) Analysis of experimental data on changes in various structures and functions of the rat brain following intranasal administration of Fe2O3 nanoparticles. Int J Mol Sci 24:1–12. https://doi.org/10.3390/ijms24043572
Moos T, Møllgård K (1993) A sensitive post-DAB enhancement technique for demonstration of iron in the central nervous system. Histochemistry 99:471–475. https://doi.org/10.1007/BF00274100
Comments (0)