Wilkerson RC, Linton Y-M, Strickman D. Mosquitoes of the world (Vols 1 & 2). Johns Hopkins University Press; 2021.
• Faulde MK, Rueda LM, Khaireh BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa. Acta Trop. 2014;139:39–43 This publication reports the initial discovery of Anopheles stephensi collected from Djibouti.
• Gad AM. Anopheles stephensi Liston in Egypt, UAR. Mosq News. 1967;27(2):171. This publication reports the initial discovery of Anopheles stephensi collected from Egypt in 1966; this appears to be the first report of this species in Africa.
• Ahmed A, Khogali R, Elnour MA, Nakao R, Salim B. Emergence of the invasive malaria vector Anopheles stephensi in Khartoum State, Central Sudan. Parasit Vectors. 2021;14(1):1–5. This publication reports the initial discovery of Anopheles stephensi collected from the Sudan.
• Ali S, Samake JN, Spear J, Carter TE. Morphological identification and genetic characterization of Anopheles stephensi in Somaliland. Parasit Vectors. 2022;15(1):247. (This publication reports the initial discovery of Anopheles stephensi collected from Somalia.)
Article CAS PubMed PubMed Central Google Scholar
• Nigerian Institute of Medical Research. 2022. NIMR discovers new malaria vector in northern Nigeria. https://nimr.gov.ng/nimr/wp-content/uploads/2022/07/NIMR-discovers-new-malaria-vector-in-northern-Nigeria-Healthwise_-healthwise.punchng.com_.pdf. Date: July 26, 2022. Accessed July 2023. This publication reports the initial discovery of Anopheles stephensi collected from Nigeria; this is not a peer-reviewed study.
• Ochomo EO, Milanoi S, Abong’o B, Onyango B, Muchoki M, Omoke D, Olanga E, Njoroge L, Juma E, Otieno JD, Matoke D. Molecular surveillance leads to the first detection of Anopheles stephensi in Kenya., 31 May 2023, PREPRINT (Version 2) available at Research Square: https://doi.org/10.21203/rs.3.rs-2498485/v2. Accessed August 2023. This publication reports the initial discovery of Anopheles stephensi collected from Kenya.
Huestis DL, Dao A, Diallo M, Sanogo ZL, Samake D, Yaro AS, Ousman Y, Linton Y-M, Krishna A, Veru L, Krajacich BJ. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature. 2019;574(7778):404–8.
Article CAS PubMed Google Scholar
Lehmann T, Bamou R, Chapman JW, Reynolds DR, Armbruster PA, Dao A, Yaro AS, Burkot TR, Linton Y-M. Urban malaria may be spreading via the wind—here’s why that’s important. Proc Natl Acad Sci. 2023;120(18):e2301666120
Ahn J, Sinka M, Irish S, Zohdy S. Modeling marine cargo traffic to identify countries in Africa with greatest risk of invasion by Anopheles stephensi. Sci Rep. 2023;13(1):876.
Article CAS PubMed PubMed Central Google Scholar
Blanford JI, Blanford S, Crane RG, Mann ME, Paaijmans KP, Schreiber KV, Thomas MB. Implications of temperature variation for malaria parasite development across Africa. Sci Rep. 2013;3(1):1300.
Article CAS PubMed PubMed Central Google Scholar
• World Health Organization. Partners convening: a regional response to the invasion of Anopheles stephensi in Africa: Meeting Report, 8–10 March 2023. https://apps.who.int/iris/handle/10665/369368. This publication reports the initial discovery of Anopheles stephensi collected from Eritrea Ghana and Zanzibar; this is not a peer-reviewed study.
de Santi VP, Khaireh BA, Chiniard T, Pradines B, Taudon N, Larréché S, Mohamed AB, de Laval F, Berger F, Gala F, Mokrane M. Role of Anopheles stephensi mosquitoes in malaria outbreak, Djibouti, 2019. Emerg Infect Dis. 2021;27(6):1697.
Article PubMed PubMed Central Google Scholar
Hamlet A, Dengela D, Tongren JE, Tadesse FG, Bousema T, Sinka M, Seyoum A, Irish SR, Armistead JS, Churcher T. The potential impact of Anopheles stephensi establishment on the transmission of Plasmodium falciparum in Ethiopia and prospective control measures. BMC Med. 2022;20(1):135.
Article CAS PubMed PubMed Central Google Scholar
Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, Hay SI. Global epidemiology of Plasmodium vivax. Am J Trop Med Hyg. 2016;95(6 Suppl):15.
Article PubMed PubMed Central Google Scholar
Mutsaers M, Engdahl CS, Wilkman L, Ahlm C, Evander M, Lwande OW. Vector competence of Anopheles stephensi for O’nyong-nyong virus: a risk for global virus spread. Parasit Vectors. 2023;16(1):1–8.
Angel S, Parent J, Civco DL, Blei A, Potere D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog Plan. 2011;75(2):53–107.
• Sinka ME, Pironon S, Massey NC, Longbottom J, Hemingway J, Moyes CL, Willis KJ. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc Natl Acad Sci. 2020;117(40):24900–8. This publication presents the most recent predicted habitat suitability for Anopheles stephensi in Africa.
Article CAS PubMed PubMed Central Google Scholar
Soper FL, Wilson DB. Anopheles gambiae in Brazil, 1930 to 1940. Rockefeller Foundation; 1943.
Henderson JV, Storeygard A, Deichmann U. Has climate change driven urbanization in Africa? J Dev Econ. 2017;1(124):60–82. https://doi.org/10.1016/j.jdeveco.2016.09.001
Henderson JV, Storeygard A, Deichmann U. Has climate change driven urbanization in Africa? J Dev Econ. 2017;1(124):60–82.
Marchiori L, Maystadt JF, Schumacher I. The impact of weather anomalies on migration in subSaharan Africa. J Environ Econ Manag. 2012;63(3):355–74. https://doi.org/10.1016/j.jeem.2012.02.001
Marchiori L, Maystadt JF, Schumacher I. The impact of weather anomalies on migration in sub-Saharan Africa. J Environ Econ Manag. 2012;63(3):355–74.
• Mafwele BJ, Lee JW. Relationships between transmission of malaria in Africa and climate factors. Sci Rep. 2022;12(1):14392. This publication details how temperature will impact malaria transmission and climate change in Africa.
Article CAS PubMed PubMed Central Google Scholar
Weiss DJ, Bhatt S, Mappin B, Van Boeckel TP, Smith DL, Hay SI, Gething PW. Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000–2012: a high-resolution spatiotemporal prediction. Malar J. 2014;13(1):1–11.
Diouf I, Adeola AM, Abiodun GJ, Lennard C, Shirinde JM, Yaka P, Ndione JA, Gbobaniyi EO. Impact of future climate change on malaria in West Africa. Theoret Appl Climatol. 2022;1:1–3.
Garamszegi LZ. Climate change increases the risk of malaria in birds. Glob Change Biol. 2011;17(5):1751–9.
Caminade C, McIntyre KM, Jones AE. Impact of recent and future climate change on vector-borne diseases. Ann N Y Acad Sci. 2019;1436(1):157–73.
Miazgowicz KL, Mordecai EA, Ryan SJ, Hall RJ, Owen J, Adanlawo T, Balaji K, Murdock CC. Mosquito species and age influence thermal performance of traits relevant to malaria transmission. biorxiv. 2019;14:769604.
Villena OC, Ryan SJ, Murdock CC, Johnson LR. Temperature impacts the environmental suitability for malaria transmission by Anopheles gambiae and Anopheles stephensi. Ecology. 2022;103(8):e3685.
• Carter TE, Yared S, Getachew D, Spear J, Choi SH, Samake JN, Mumba P, Dengela D, Yohannes G, Chibsa S, Murphy M. Genetic diversity of Anopheles stephensi in Ethiopia provides insight into patterns of spread. Parasit Vectors. 2021;14(1):602. This publication reports the initial discovery of Anopheles stephensi collected from Ethiopia.
Article CAS PubMed PubMed Central Google Scholar
Rao BA, Sweet WC, Subba Rao AM. Ova measurements of A. stephensi type and A. stephensi var. mysorensis. J Malaria Inst India. 1938;1:261–6.
Subbarao SK, Vasantha K, Adak T, Sharma VP, Curtis CF. Egg-float ridge number in Anopheles stephensi: ecological variation and genetic analysis. Med Vet Entomol. 1987;1(3):265–71.
Article CAS PubMed Google Scholar
Vatandoost H, Oshaghi MA, Abaie MR, Shahi M, Yaaghoobi F, Baghaii M, Hanafi-Bojd AA, Zamani G, Townson H. Bionomics of Anopheles stephensi Liston in the malarious area of Hormozgan province, southern Iran, 2002. Acta Trop. 2006;97(2):196–203.
Article CAS PubMed Google Scholar
Chakraborty S, Ray S, Tandon N. Seasonal prevalence of Anopheles stephensi larvae and existence of two forms of the species in an urban garden in Calcutta City. Indian J Malariol. 1998;35(1):8–14.
Manouchehri AV, Javadian E, Eshighy N, Motabar M. Ecology of Anopheles stephensi Liston in southern Iran. Trop Geogr Med. 1976;28(3):228–32.
Thomas S, Ravishankaran S, Justin NA, Asokan A, Mathai MT, Valecha N, Montgomery J, Thomas MB, Eapen A. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malar J. 2017;16(1):1–7.
Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, Gething PW, Elyazar IR, Kabaria CW, Harbach RE, Hay SI. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2011;4(1):1–46.
Balkew M, Mumba P, Yohannes G, Abiy E, Getachew D, Yared S, Worku A, Gebresilassie A, Tadesse FG, Gadisa E, Esayas E. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018–2020. Malar J. 2021;20(1):1–3.
Foley DH, Wilkerson RC, Birney I, Harrison S, Christensen J, Rueda LM. MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease. Int J Health Geogr. 2010;9(1):1–8.
Foley DH, Maloney FA Jr, Harrison FJ, Wilkerson RC, Rueda LM. Online spatial database of US Army public health command region-west mosquito surveillance records: 1947–2009. US Army Med Dep J. 2011;1:29–36.
Foley DH, Wilkerson RC, Rueda LM. Importance of the “what”,“when”, and “where” of mosquito collection events. J Med Entomol. 2009;46(4):717–22.
Molyneux DH. Common themes in changing vector-borne disease scenarios. Trans R Soc Trop Med Hyg. 2003;97(2):129–32.
Crombie MK, Gillies RR, Arvidson RE, Brookmeyer P, Weil GJ, Sultan M, Harb M. An application of remotely derived climatological fields for risk assessment of vector-borne diseases: a spatial study of filariasis prevalence in the Nile Delta, Egypt. Photogramm Eng Remote Sens. 1999;65(ANL/ER/JA-37529). https://www.osti.gov/biblio/943107
El-Zeiny A, El-Hefni A, Sowilem M. Geospatial techniques for environmental modeling of mosquito breeding habitats at Suez Canal Zone, Egypt. Egypt J Remote Sens Space Sci. 2017;20(2):283–93.
Attaway DF, Jacobsen KH, Falconer A, Manca G, Waters NM. Risk analysis for dengue suitability in Africa using the ArcGIS predictive analysis tools (PA tools). Acta Trop. 2016;1(158):248–57.
Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT. Climate change influences on global distributions of dengue and chikungunya virus vectors. Phil Trans R Soc B: Biol Sci. 2015;370(1665):20140135.
Comments (0)