Novelty-induced memory consolidation is accompanied by increased Agap3 transcription: a cross-species study

Ebbinghaus H, Memory. A contribution to experimental psychology: Teachers College. Columbia University; 1913.

Duszkiewicz AJ, McNamara CG, Takeuchi T, Genzel L. Novelty and dopaminergic modulation of memory persistence: a tale of two Systems. Trends Neurosci. 2019;42(2):102–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dunsmoor JE, Murty VP, Clewett D, Phelps EA, Davachi L. Tag and capture: how salient experiences target and rescue nearby events in memory. Trends Cogn Sci. 2022;26(9):782–95.

Article  PubMed  PubMed Central  Google Scholar 

Ballarini F, Martinez MC, Diaz Perez M, Moncada D, Viola H. Memory in Elementary School Children is improved by an unrelated Novel experience. PLoS ONE. 2013;8(6):e66875.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramirez Butavand D, Hirsch I, Tomaiuolo M, Moncada D, Viola H, Ballarini F. Novelty improves the formation and persistence of memory in a naturalistic School scenario. Front Psychol. 2020;11:48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guzowski JF, McNaughton BL, Barnes CA, Worley PF. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci. 1999;2(12):1120–4.

Article  CAS  PubMed  Google Scholar 

Moncada D, Viola H. Induction of long-term memory by exposure to Novelty requires protein synthesis: evidence for a behavioral tagging. J Neurosci. 2007;27(28):7476–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang SH, Redondo RL, Morris RG. Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc Natl Acad Sci U S A. 2010;107(45):19537–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takeuchi T, Duszkiewicz AJ, Sonneborn A, Spooner PA, Yamasaki M, Watanabe M, et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature. 2016;537(7620):357–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc Natl Acad Sci U S A. 2016:201616515.

Wagatsuma A, Okuyama T, Sun C, Smith LM, Abe K, Tonegawa S. Locus coeruleus input to hippocampal CA3 drives single-trial learning of a novel context. Proc Natl Acad Sci U S A. 2018;115(2):E310–e6.

Article  CAS  PubMed  Google Scholar 

Moncada D, Ballarini F, Martinez MC, Frey JU, Viola H. Identification of transmitter systems and learning tag molecules involved in behavioral tagging during memory formation. Proc Natl Acad Sci U S A. 2011;108(31):12931–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hall J, Thomas KL, Everitt BJ. Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat Neurosci. 2000;3(6):533–5.

Article  CAS  PubMed  Google Scholar 

Ballarini F, Moncada D, Martinez MC, Alen N, Viola H. Behavioral tagging is a general mechanism of long-term memory formation. Proc Natl Acad Sci U S A. 2009;106(34):14599–604.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Redondo RL, Morris RG. Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci. 2011;12(1):17–30.

Article  CAS  PubMed  Google Scholar 

Frey U, Morris RG. Synaptic tagging and long-term potentiation. Nature. 1997;385(6616):533–6.

Article  CAS  PubMed  Google Scholar 

Okuda K, Højgaard K, Privitera L, Bayraktar G, Takeuchi T. Initial memory consolidation and the synaptic tagging and capture hypothesis. Eur J Neurosci. 2021;54(8):6826–49.

Article  CAS  PubMed  Google Scholar 

Bin Ibrahim MZ, Benoy A, Sajikumar S. Long-term plasticity in the hippocampus: maintaining within and ‘tagging’ between synapses. FEBS J. 2022;289(8):2176–201.

Article  CAS  PubMed  Google Scholar 

Govindarajan A, Israely I, Huang SY, Tonegawa S. The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP. Neuron. 2011;69(1):132–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okada D, Ozawa F, Inokuchi K. Input-specific spine entry of soma-derived Vesl-1S protein conforms to synaptic tagging. Science. 2009;324(5929):904–9.

Article  CAS  PubMed  Google Scholar 

Kang H, Schuman EM. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science. 1996;273(5280):1402–6.

Article  CAS  PubMed  Google Scholar 

Biever A, Glock C, Tushev G, Ciirdaeva E, Dalmay T, Langer JD et al. Monosomes actively translate synaptic mRNAs in neuronal processes. Science. 2020;367(6477).

Wang DO, Martin KC, Zukin RS. Spatially restricting gene expression by local translation at synapses. Trends Neurosci. 2010;33(4):173–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun C, Schuman E. A multi-omics view of neuronal subcellular protein synthesis. Curr Opin Neurobiol. 2023;80:102705.

Article  CAS  PubMed  Google Scholar 

Droogers WJ, MacGillavry HD. Plasticity of postsynaptic nanostructure. Mol Cell Neurosci. 2023;124:103819.

Article  CAS  PubMed  Google Scholar 

Yang Y, Liu JJ, Structural LTP. Signal transduction, actin cytoskeleton reorganization, and membrane remodeling of dendritic spines. Curr Opin Neurobiol. 2022;74:102534.

Article  CAS  PubMed  Google Scholar 

Pinho J, Marcut C, Fonseca R. Actin remodeling, the synaptic tag and the maintenance of synaptic plasticity. IUBMB Life. 2020;72(4):577–89.

Article  CAS  PubMed  Google Scholar 

Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron. 2014;82(2):444–59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyer D, Bonhoeffer T, Scheuss V. Balance and Stability of synaptic structures during synaptic plasticity. Neuron. 2014;82(2):430–43.

Article  CAS  PubMed  Google Scholar 

Tanaka J-i, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GCR, Kasai H. Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science. 2008;319(5870):1683–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci. 2002;25:103–26.

Article  CAS  PubMed  Google Scholar 

Buonarati OR, Hammes EA, Watson JF, Greger IH, Hell JW. Mechanisms of postsynaptic localization of AMPA-type glutamate receptors and their regulation during long-term potentiation. Sci Signal. 2019;12(562).

Diering GH, Huganir RL. The AMPA receptor code of synaptic plasticity. Neuron. 2018;100(2):314–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nair D, Hosy E, Petersen JD, Constals A, Giannone G, Choquet D, et al. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J Neurosci. 2013;33(32):13204–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choquet D. Linking Nanoscale Dynamics of AMPA receptor Organization to Plasticity of Excitatory Synapses and Learning. J Neurosci. 2018;38(44):9318–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Groc L, Choquet D. Linking glutamate receptor movements and synapse function. Science. 2020;368(6496):eaay4631.

Article  CAS  PubMed  Google Scholar 

Hiester BG, Becker MI, Bowen AB, Schwartz SL, Kennedy MJ. Mechanisms and role of dendritic membrane trafficking for long-term potentiation. Front Cell Neurosci. 2018;12:391.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsuo N, Reijmers L, Mayford M. Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science. 2008;319(5866):1104–7.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif