Kinins: Locally formed peptides during inflammation with potential use in tissue regeneration

Kleiderman E, Boily A, Hasilo C, Knoppers BM. Overcoming barriers to facilitate the regulation of multi-centre regenerative medicine clinical trials. Stem Cell Res Ther. 2018;9:1–9.

Article  Google Scholar 

Zakrzewski JL, Van Den Brink MRM, Hubbell JA. Overcoming immunological barriers in regenerative medicine. Nat Biotechnol. 2014;32:786.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Järvinen TAH, Järvinen M, Kalimo H. Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J. 2013;3:337–45.

Article  PubMed  Google Scholar 

Chargé SBP, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84:209–38.

Article  PubMed  Google Scholar 

Tidball JG. Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc. 1995;27:1022–32.

Article  CAS  PubMed  Google Scholar 

Tsuji S, Taniuchi S, Hasui M, Yamamoto A, Kobayashi Y. Increased nitric oxide production by neutrophils from patients with chronic granulomatous disease on trimethoprim–sulfamethoxazole. Nitric Oxide. 2002;7:283–8.

Article  CAS  PubMed  Google Scholar 

Webb NJA, Myers CR, Watson CJ, Bottomley MJ, Brenchley PEC. Activated human neutrophils express vascular endothelial growth factor (vegf). Cytokine. 1998;10:254–7.

Article  CAS  PubMed  Google Scholar 

Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005;288(2):R345–53.

Article  CAS  PubMed  Google Scholar 

Arnold L, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204:1057–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rigamonti E, et al. Requirement of inducible nitric oxide synthase for skeletal muscle regeneration after acute damage. J Immunol. 2013;190:1767–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dort J, Fabre P, Molina T, Dumont NA. Macrophages are key regulators of stem cells during skeletal muscle regeneration and diseases. Stem Cells Int. 2019;2019:1–20.

Article  Google Scholar 

Schiaffino S, Pereira MG, Ciciliot S, Rovere-Querini P. Regulatory T cells and skeletal muscle regeneration. FEBS J. 2017;284:517–24.

Article  CAS  PubMed  Google Scholar 

Vojnits K, Pan H, Mu X, Li Y. Characterization of an injury induced population of muscle-derived stem cell-like cells. Sci Rep. 2015;5:1–10.

Article  Google Scholar 

Bader M. 1 Kinins: history and outlook. Kinins. 2011. https://doi.org/10.1515/9783110252354.1/HTML.

Pesquero JB, et al. Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proc Natl Acad Sci U S A. 2000;97:8140–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cayla C, et al. Mice deficient for both kinin receptors are normotensive and protected from endotoxin-induced hypotension. FASEB J. 2007;21:1689–98.

Article  CAS  PubMed  Google Scholar 

Borkowski JA, et al. Targeted disruption of a B2 bradykinin receptor gene in mice eliminates bradykinin action in smooth muscle and neurons. J Biol Chem. 1995;270:13706–10.

Article  CAS  PubMed  Google Scholar 

Parreiras-e-Silva LT, et al. The kinin B1 receptor regulates muscle-specific E3 ligases expression and is involved in skeletal muscle mass control. Clin Sci. 2014;127:185–94.

Article  CAS  Google Scholar 

Rampa DR, et al. Kinin B1 receptor blockade attenuates hepatic fibrosis and portal hypertension in chronic liver diseases in mice. J Transl Med. 2022. https://doi.org/10.1186/s12967-022-03808-7.

Article  PubMed  PubMed Central  Google Scholar 

Lin X, et al. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats. Toxicol Appl Pharmacol. 2016;305:153–60.

Article  CAS  PubMed  Google Scholar 

Rampa DR, et al. Reversal of pulmonary arterial hypertension and neointimal formation by kinin B1 receptor blockade. Respir Res. 2021. https://doi.org/10.1186/s12931-021-01875-w.

Article  PubMed  PubMed Central  Google Scholar 

Wu D, Lin X, Bernloehr C, Hildebrandt T, Doods H. Effects of a novel bradykinin B1 receptor antagonist and angiotensin II receptor blockade on experimental myocardial infarction in rats. PLoS ONE. 2012;7:e51151.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Acuña MJ, et al. Blockade of Bradykinin receptors worsens the dystrophic phenotype of mdx mice: differential effects for B1 and B2 receptors. J Cell Commun Signal. 2018;12:589–601.

Article  PubMed  Google Scholar 

Meotti FC, et al. Inflammatory muscle pain is dependent on the activation of kinin B 1 and B 2 receptors and intracellular kinase pathways. Br J Pharmacol. 2012;166:1127–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruze A, et al. Bradykinin B1 receptor antagonist protects against cold stress–induced erectile dysfunction in rats. Sex Med. 2023. https://doi.org/10.1093/sexmed/qfac004.

Article  PubMed  PubMed Central  Google Scholar 

Budu A, et al. Renal fibrosis due to multiple cisplatin treatment is exacerbated by kinin b1 receptor antagonism. Brazilian J Med Biol Res. 2021. https://doi.org/10.1590/1414-431x2021e11353.

Article  Google Scholar 

Huart A, et al. Kinin B1 receptor antagonism is equally efficient as angiotensin receptor 1 antagonism in reducing renal fibrosis in experimental obstructive nephropathy, but is not additive. Front Pharmacol. 2015. https://doi.org/10.3389/fphar.2015.00008.

Article  PubMed  PubMed Central  Google Scholar 

Klein J, et al. Delayed blockade of the kinin B1 receptor reduces renal inflammation and fibrosis in obstructive nephropathy. FASEB J. 2009;23:134–42.

Article  CAS  PubMed  Google Scholar 

Wang PHM, et al. Deletion of bradykinin B1 receptor reduces renal fibrosis. Int Immunopharmacol. 2009;9:653–7.

Article  CAS  PubMed  Google Scholar 

Wang PHM, et al. Brabykinin B1 receptor antagonism is beneficial in renal ischemia-reperfusion injury. PLoS ONE. 2008. https://doi.org/10.1371/annotation/bde714c3-7f6d-4f03-83b3-e291005c3a39.

Article  PubMed  PubMed Central  Google Scholar 

Lagneux C, Bader M, Pesquero JB, Demenge P, Ribuot C. Detrimental implication of B1 receptors in myocardial ischemia: evidence from pharmacological blockade and gene knockout mice. Int Immunopharmacol. 2002;2:815–22.

Article  CAS  PubMed  Google Scholar 

Austinat M, et al. Blockade of bradykinin receptor b1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. Stroke. 2009;40:285–93.

Article  CAS  PubMed  Google Scholar 

Westermann D, et al. Gene deletion of the kinin receptor B1 attenuates cardiac inflammation and fibrosis during the development of experimental diabetic cardiomyopathy. Diabetes. 2009;58:1373–81.

Article  PubMed  PubMed Central  Google Scholar 

Cignachi NP, Pesquero JB, Oliveira RB, Etges A, Campos MM. Kinin B1 receptor deletion affects bone healing in type 1 diabetic mice. J Cell Physiol. 2015;230:3019–28.

Article  CAS  PubMed  Google Scholar 

Martins L, et al. Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors. Inflamm Res. 2023. https://doi.org/10.1007/S00011-023-01766-4.

Article  PubMed  PubMed Central  Google Scholar 

Alves JM, et al. Kinin-B2 receptor activity in skeletal muscle regeneration and myoblast differentiation. Stem Cell Rev Rep. 2019;15:48–58.

Article  CAS  PubMed  Google Scholar 

Schanstra JP, et al. In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest. 2002;110:371–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Picoli Souza K, et al. Effect of kinin B2 receptor ablation on skeletal muscle development and myostatin gene expression. Neuropeptides 2010;44:209–214. https://doi.org/10.1016/j.npep.2009.12.001

Bledsoe G, et al. Reversal of renal fibrosis, inflammation, and glomerular hypertrophy by Kallikrein gene delivery. Hum Gene Ther. 2006. https://doi.org/10.1089/hum.2006.17.ft-203.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif