Strategic application of C–H oxidation in natural product total synthesis

Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. Engl. 51, 8960–9009 (2012).

Article  CAS  PubMed  Google Scholar 

Davies, H. M. L. & Morton, D. Recent advances in C–H functionalization. J. Org. Chem. 81, 343–350 (2016).

Article  CAS  PubMed  Google Scholar 

Rogge, T. et al. C–H activation. Nat. Rev. Methods Primers 1, 1–31 (2021).

Article  Google Scholar 

Davies, H. M. L., Bois, J. D. & Yu, J.-Q. C–H functionalization in organic synthesis. Chem. Soc. Rev. 40, 1855–1856 (2011).

Article  CAS  PubMed  Google Scholar 

Bellina, F. & Rossi, R. Transition metal-catalyzed direct arylation of substrates with activated sp3-hybridized C−H bonds and some of their synthetic equivalents with aryl halides and pseudohalides. Chem. Rev. 110, 1082–1146 (2010).

Article  CAS  PubMed  Google Scholar 

Che, C.-M., Lo, V. K.-Y., Zhou, C.-Y. & Huang, J.-S. Selective functionalisation of saturated C–H bonds with metalloporphyrin catalysts. Chem. Soc. Rev. 40, 1950–1975 (2011).

Article  CAS  PubMed  Google Scholar 

Zhou, M. & Crabtree, R. H. C–H oxidation by platinum group metal oxo or peroxo species. Chem. Soc. Rev. 40, 1875–1884 (2011).

Article  CAS  PubMed  Google Scholar 

Lu, H. & Zhang, X. P. Catalytic C–H functionalization by metalloporphyrins: recent developments and future directions. Chem. Soc. Rev. 40, 1899–1909 (2011).

Article  CAS  PubMed  Google Scholar 

Guo, X.-X., Gu, D.-W., Wu, Z. & Zhang, W. Copper-catalyzed C–H functionalization reactions: efficient synthesis of heterocycles. Chem. Rev. 115, 1622–1651 (2015).

Article  CAS  PubMed  Google Scholar 

Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).

Article  CAS  PubMed  Google Scholar 

Hartwig, J. F. Catalyst-controlled site-selective bond activation. Acc. Chem. Res. 50, 549–555 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gormisky, P. E. & White, M. C. Catalyst-controlled aliphatic C–H oxidations with a predictive model for site-selectivity. J. Am. Chem. Soc. 135, 14052–14055 (2013).

Article  CAS  PubMed  Google Scholar 

Zhang, Q. & Shi, B.-F. Site-selective functionalization of remote aliphatic C–H bonds via C–H metallation. Chem. Sci. 12, 841–852 (2021).

Article  CAS  Google Scholar 

Christmann, M. Selective oxidation of aliphatic C–H bonds in the synthesis of complex molecules. Angew. Chem. Int. Ed. Engl. 47, 2740–2742 (2008).

Article  CAS  PubMed  Google Scholar 

Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

Article  CAS  PubMed  Google Scholar 

McMurray, L., O’Hara, F. & Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 40, 1885–1898 (2011).

Article  CAS  PubMed  Google Scholar 

Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond oxidation. Angew. Chem. Int. Ed. Engl. 50, 3362–3374 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, D. Y.-K. & Youn, S. W. C–H activation: a complementary tool in the total synthesis of complex natural products. Chem. Eur. J. 18, 9452–9474 (2012).

Article  CAS  PubMed  Google Scholar 

Qiu, Y. & Gao, S. Trends in applying C–H oxidation to the total synthesis of natural products. Nat. Prod. Rep. 33, 562–581 (2016).

Article  CAS  PubMed  Google Scholar 

Karimov, R. R. & Hartwig, J. F. Transition-metal-catalyzed selective functionalization of C(sp3)−H bonds in natural products. Angew. Chem. Int. Ed. Engl. 57, 4234–4241 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abrams, D. J., Provencher, P. A. & Sorensen, E. J. Recent applications of C–H functionalization in complex natural product synthesis. Chem. Soc. Rev. 47, 8925–8967 (2018).

Article  CAS  PubMed  Google Scholar 

Santana, V. C. S., Fernandes, M. C. V., Cappuccelli, I., Richieri, A. C. G. & de Lucca Jr, E. C. Metal-catalyzed C–H bond oxidation in the total synthesis of natural and unnatural products. Synthesis 54, 5337–5359 (2022).

Article  CAS  Google Scholar 

Trost, B. M. Selectivity: a key to synthetic efficiency. Science 219, 245–250 (1983).

Article  CAS  PubMed  Google Scholar 

King, S. M. & Herzon, S. B. Substrate-modified functional group reactivity: hasubanan and acutumine alkaloid syntheses. J. Org. Chem. 79, 8937–8947 (2014).

Article  CAS  PubMed  Google Scholar 

Green, S. A. et al. The high chemofidelity of metal-catalyzed hydrogen atom transfer. Acc. Chem. Res. 51, 2628–2640 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ishihara, Y. & Baran, P. S. Two-phase terpene total synthesis: historical perspective and application to the Taxol® problem. Synlett 2010, 1733–1745 (2010).

Article  Google Scholar 

Kanda, Y. et al. Two-phase synthesis of Taxol. J. Am. Chem. Soc. 142, 10526–10533 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanda, Y., Ishihara, Y., Wilde, N. C. & Baran, P. S. Two-phase total synthesis of taxanes: tactics and strategies. J. Org. Chem. 85, 10293–10320 (2020).

Article  CAS  PubMed  Google Scholar 

Chen, K. & Baran, P. S. Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature 459, 824–828 (2009). A landmark synthesis using C–H oxidations in a two-phase approach.

Article  CAS  PubMed  Google Scholar 

Hung, K. et al. Development of a terpene feedstock-based oxidative synthetic approach to the Illicium sesquiterpenes. J. Am. Chem. Soc. 141, 3083–3099 (2019). A synthesis featuring several enabling C–H oxidations expanding the possibilities of chiral pool strategies.

Article  CAS  PubMed  PubMed Central  Google Scholar 

West, S. P., Bisai, A., Lim, A. D., Narayan, R. R. & Sarpong, R. Total synthesis of (+)-lyconadin A and related compounds via oxidative C−N bond formation. J. Am. Chem. Soc. 131, 11187–11194 (2009).

Article  CAS  PubMed  Google Scholar 

Fischer, D. F. & Sarpong, R. Total synthesis of (+)-complanadine A using an iridium-catalyzed pyridine C−H functionalization. J. Am. Chem. Soc. 132, 5926–5927 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Newton, J. N., Fischer, D. F. & Sarpong, R. Synthetic studies on pseudo-dimeric lycopodium alkaloids: total synthesis of complanadine B. Angew. Chem. Int. Ed. Engl. 52, 1726–1730 (2013).

Article  CAS  PubMed  Google Scholar 

Leal, R. A. et al. Application of a palladium-catalyzed C−H functionalization/indolization method to syntheses of cis-trikentrin A and herbindole B. Angew. Chem. Int. Ed. Engl. 55, 11824–11828 (2016).

Article  CAS  PubMed  Google Scholar 

Haider, M., Sennari, G., Eggert, A. & Sarpong, R. Total synthesis of the Cephalotaxus norditerpenoids (±)-cephanolides A–D. J. Am. Chem. Soc. 143, 2710–2715 (2021).

Article  CAS  PubMed  Google Scholar 

Haley, H. M. S. et al. Bioinspired diversification approach toward the total synthesis of lycodine-type alkaloids. J. Am. Chem. Soc. 143, 4732–4740 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones, K. E., Park, B., Doering, N. A., Baik, M.-H. & Sarpong, R. Rearrangements of the chrysanthenol core: application to a formal synthesis of xishacorene B. J. Am. Chem. Soc. 143, 20482–20490 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lusi, R. F., Sennari, G. & Sarpong, R. Total synthesis of nine longiborneol sesquiterpenoids using a functionalized camphor strategy. Nat. Chem. 14, 450–456 (2022).

留言 (0)

沒有登入
gif