Boike, L., Henning, N. J. & Nomura, D. K. Advances in covalent drug discovery. Nat. Rev. Drug Discov. 21, 881–898 (2022).
Article CAS PubMed PubMed Central Google Scholar
Liu, R., Yue, Z., Tsai, C.-C. & Shen, J. Assessing lysine and cysteine reactivities for designing targeted covalent kinase inhibitors. J. Am. Chem. Soc. 141, 6553–6560 (2019).
Article CAS PubMed PubMed Central Google Scholar
Ferlenghi, F. et al. A sulfonyl fluoride derivative inhibits EGFRL858R/T790M/C797S by covalent modification of the catalytic lysine. Eur. J. Med. Chem. 225, 113786 (2021).
Article CAS PubMed Google Scholar
Hett, E. C. et al. Rational targeting of active-site tyrosine residues using sulfonyl fluoride probes. ACS Chem. Biol. 10, 1094–1098 (2015).
Article CAS PubMed Google Scholar
Chen, P. et al. 2-Ethynylbenzaldehyde-based, lysine-targeting irreversible covalent inhibitors for protein kinases and nonkinases. J. Am. Chem. Soc. 145, 3844–3849 (2023).
Kawano, M. et al. Lysine-reactive N-acyl-N-aryl sulfonamide warheads: improved reaction properties and application in the covalent inhibition of an ibrutinib-resistant BTK mutant. J. Am. Chem. Soc. 145, 6202–26212 (2023).
Gabizon, R. et al. A simple method for developing lysine targeted covalent protein reagents. Nat. Commun. 14, 7933 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Yang, T. et al. Reversible lysine-targeted probes reveal residence time-based kinase selectivity. Nat. Chem. Biol. 18, 934–941 (2022).
Article CAS PubMed PubMed Central Google Scholar
Woyach, J. A. et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 370, 2286–2294 (2014).
Comments (0)