Zhang, L., Zhou, M., Wang, A. & Zhang, T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem. Rev. 120, 683–733 (2020).
Article CAS PubMed Google Scholar
Caron, S., Dugger, R. W., Ruggeri, S. G., Ragan, J. A. & Ripin, D. H. B. Large-scale oxidations in the pharmaceutical industry. Chem. Rev. 106, 2943–2989 (2006).
Article CAS PubMed Google Scholar
Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).
Article CAS PubMed Google Scholar
Wang, D., Weinstein, A. B., White, P. B. & Stahl, S. S. Ligand-promoted palladium-catalyzed aerobic oxidation reactions. Chem. Rev. 118, 2636–2679 (2018).
Article CAS PubMed Google Scholar
Zhang, H., Sun, Z. & Hu, Y. H. Steam reforming of methane: current states of catalyst design and process upgrading. Renew. Sustain. Energy Rev. 149, 111330 (2021).
Hashim, S. S., Mohamed, A. R. & Bhatia, S. Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renew. Sustain. Energy Rev. 15, 1284–1293 (2011).
Pang, M. et al. Controlled partial transfer hydrogenation of quinolines by cobalt-amido cooperative catalysis. Nat. Commun. 11, 1249 (2020).
Article CAS PubMed PubMed Central Google Scholar
Gunanathan, C. & Milstein, D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science 341, 1229712 (2013).
Bryliakov, K. P. Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2. Chem. Rev. 117, 11406–11459 (2017).
Article CAS PubMed Google Scholar
Ghavtadze, N., Melkonyan, F. S., Gulevich, A. V., Huang, C. & Gevorgyan, V. Conversion of 1-alkenes into 1,4-diols through an auxiliary-mediated formal homoallylic C–H oxidation. Nat. Chem. 6, 122–125 (2014).
Article CAS PubMed PubMed Central Google Scholar
Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).
Article CAS PubMed PubMed Central Google Scholar
Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).
Münchow, T., Dana, S., Xu, Y., Yuan, B. & Ackermann, L. Enantioselective electrochemical cobalt-catalyzed aryl C–H activation reactions. Science 379, 1036–1042 (2023).
Li, J., Zhang, Y., Kuruvinashetti, K. & Kornienko, N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).
Article CAS PubMed Google Scholar
Tang, C., Zheng, Y., Jaroniec, M. & Qiao, S.-Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem. Int. Ed. 60, 19572–19590 (2021).
Li, Y. et al. Recent progress in synergistic electrocatalysis for generation of valuable products based on water cycle. Nano Res. 16, 6444–6476 (2023).
Campbell, K. N. & Young, E. E. The addition of hydrogen to multiple carbon–carbon bonds. IV. The electrolytic reduction of alkyl and aryl acetylenes. J. Am. Chem. Soc. 65, 965–967 (1943).
Schlesinger, H. I. & Burg, A. B. Recent developments in the chemistry of the boron hydrides. Chem. Rev. 31, 1–41 (1942).
Harnisch, F. & Morejón, M. C. Hydrogen from water is more than a fuel: hydrogenations and hydrodeoxygenations for a biobased economy. Chem. Rec. 21, 2277–228 (2021).
Article CAS PubMed Google Scholar
Xu, Y. & Zhang, B. Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions. ChemElectroChem 6, 3214–3226 (2019).
Fuchigami, T., Inagi, S. & Atobe, M. Fundamentals and Applications of Organic Electrochemistry 1st edn (Wiley, 2015).
Jiang, J., Wu, B. & Cha, C. Electrosynthesis of p-methoxybenzaldehyde on graphite/Nafion membrane composite electrodes. Electrochim. Acta 43, 2549 (1998).
Zhang, P. & Sun, L. Electrocatalytic hydrogenation and oxidation in aqueous conditions. Chin. J. Chem. 38, 996–1004 (2020).
Liu, C., Wu, Y., Zhao, B. & Zhang, B. Designed nanomaterials for electrocatalytic organic hydrogenation using water as the hydrogen source. Acc. Chem. Res. 56, 1872–1883 (2023).
Article CAS PubMed Google Scholar
Sun, H., Ou, W., Sun, L., Wang, B. & Su, C. Recent advances in nature-inspired nanocatalytic reduction of organic molecules with water. Nano Res. 15, 10292–10315 (2022).
Akhade, S. A. et al. Electrocatalytic hydrogenation of biomass-derived organics: a review. Chem. Rev. 120, 11370–11419 (2020).
Article CAS PubMed Google Scholar
Chen, G., Li, X. & Feng, X. Upgrading organic compounds through the coupling of electrooxidation with hydrogen evolution. Angew. Chem. Int. Ed. 61, e202209014 (2022).
Heard, D. M. & Lennox, A. J. J. Electrode materials in modern organic electrochemistry. Angew. Chem. Int. Ed. 59, 18866–18884 (2020).
Asefa, T. Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts. Acc. Chem. Res. 49, 1873–1883 (2016).
Article CAS PubMed Google Scholar
Zhao, B.-H. et al. Economically viable electrocatalytic ethylene production with high yield and selectivity. Nat. Sustain. 6, 827–837 (2023).
Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).
Article CAS PubMed Google Scholar
Inoue, H., Abe, T. & Iwakura, C. Successive hydrogenation of styrene at a palladium sheet electrode combined with electrochemical supply of hydrogen. Chem. Commun. https://doi.org/10.1039/CC9960000055 (1996).
Sherbo, R. S., Delima, R. S., Chiykowski, V. A., MacLeod, B. P. & Berlinguette, C. P. Complete electron economy by pairing electrolysis with hydrogenation. Nat. Catal. 1, 501–507 (2018).
Sherbo, R. S., Kurimoto, A., Brown, C. M. & Berlinguette, C. P. Efficient electrocatalytic hydrogenation with a palladium membrane reactor. J. Am. Chem. Soc. 141, 7815–7821 (2019).
Article CAS PubMed Google Scholar
Sato, T., Sato, S. & Itoh, N. Using a hydrogen-permeable palladium membrane electrode to produce hydrogen from water and hydrogenate toluene. Int. J. Hydrog. Energy 41, 5419e5427 (2016).
Han, G., Li, G. & Sun, Y. Electrocatalytic dual hydrogenation of organic substrates with a faradaic efficiency approaching 200%. Nat. Catal. 6, 224–233 (2023).
Yan, Y.-Q. et al. Electrochemistry-assisted selective butadiene hydrogenation with water. Nat. Commun. 14, 2106 (2023).
Article CAS PubMed PubMed Central Google Scholar
Xu, Y. et al. Electrochemical hydrogenation of oxidized contaminants for water purification without supporting electrolyte. Nat. Water 1, 95–103 (2023).
Zhang, Y. & Kornienko, N. C≡N triple bond cleavage via trans-membrane hydrogenation. Chem. Catal. 2, 499–507 (2022).
Kurimoto, A., Sherbo, R. S., Cao, Y., Loo, N. W. X. & Berlinguette, C. P. Electrolytic deuteration of unsaturated bonds without using D2. Nat. Catal. 3, 719–726 (2020).
Kurimoto, A. et al. Bioelectrocatalysis with a palladium membrane reactor. Nat. Commun. 14, 1814 (2023).
Article CAS PubMed PubMed Central Google Scholar
Kurimoto, A. et al. Physical separation of H2 activation from hydrogenation chemistry reveals the specific role of secondary metal catalysts. Angew. Chem. Int. Ed. 60, 11937–11942 (2021).
Conde, J. J., Maroño, M. & Sánchez-Hervás, J. M. Pd-based membranes for hydrogen separation: review of alloying elements and their influence on membrane properties. Sep. Purif. Rev. 46, 152–177 (2017).
Comments (0)