Estimation of relative biological effectiveness of 225Ac compared to 177Lu during [225Ac]Ac-PSMA and [177Lu]Lu-PSMA radiopharmaceutical therapy using TOPAS/TOPAS-nBio/MEDRAS

Luining WI, Cysouw MC, Meijer D, Hendrikse NH, Boellaard R, Vis AN, Oprea-Lager DE. Targeting PSMA revolutionizes the role of nuclear medicine in diagnosis and treatment of prostate cancer. Cancers. 2022;14(5):1169.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3(1):81–5.

CAS  PubMed  Google Scholar 

Heesch A, Maurer J, Stickeler E, Beheshti M, Mottaghy FM, Morgenroth A. Development of radiotracers for breast cancer—the tumor microenvironment as an emerging target. Cells. 2020;9(10):2334.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sartor O, De Bono J, Chi KN, Fizazi K, Herrmann K, Rahbar K, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385(12):1091–103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kratochwil C, Bruchertseifer F, Rathke H, Bronzel M, Apostolidis C, Weichert W, Haberkorn U, Giesel FL, Morgenstern A. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med. 2017;58(10):1624–31.

Article  CAS  PubMed  Google Scholar 

Sgouros G, Roeske JC, McDevitt MR, Palm S, Allen BJ, Fisher DR, Brill AB, Song H, Howell RW, Akabani G. MIRD pamphlet no. 22 (abridged): radiobiology and dosimetry of α-particle emitters for targeted radionuclide therapy. J Nucl Med. 2010;51(2):311–28.

Article  CAS  PubMed  Google Scholar 

Feinendegen LE, McClure JJ. Alpha-emitters for medical therapy: workshop of the United States Department of Energy: Denver, Colorado, May 30–31, 1996. Radiat Res. 1997;148(2):195–201.

Article  CAS  Google Scholar 

Hobbs RF, Howell RW, Song H, Baechler S, Sgouros G. Redefining relative biological effectiveness in the context of the EQDX formalism: implications for alpha-particle emitter therapy. Radiat Res. 2014;181(1):90–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li WB, Hofmann W, Friedland W. Microdosimetry and nanodosimetry for internal emitters. Radiat Meas. 2018;1(115):29–42.

Article  Google Scholar 

Friedland W, Dingfelder M, Kundrát P, Jacob P. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res Fund Mol Mech Mutagene. 2011;711(1–2):28–40.

Article  CAS  Google Scholar 

Incerti S, Douglass M, Penfold S, Guatelli S, Bezak E. Review of Geant4-DNA applications for micro and nanoscale simulations. Physica Med. 2016;32(10):1187–200.

Article  CAS  Google Scholar 

Salvat F. PENELOPE-2014: a code system for monte carlo simulation of electron and photon transport, report NEA/NSC/DOC(2015) 3. Barcelona: OECD Nuclear Energy Agency; 2015.

Google Scholar 

Li J, Li C, Qiu R, Yan C, Xie W, Wu Z, Zeng Z, Tung C. DNA strand breaks induced by electrons simulated with Nanodosimetry Monte Carlo Simulation Code: NASIC. Radiat Prot Dosimetry. 2015;166(1–4):38–43.

Article  CAS  PubMed  Google Scholar 

Perl J, Shin J, Schümann J, Faddegon B, Paganetti H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 2012;39(11):6818–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faddegon B, Ramos-Méndez J, Schuemann J, McNamara A, Shin J, Perl J, Paganetti H. The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Physica Med. 2020;1(72):114–21.

Article  Google Scholar 

Agostinelli S, Allison J, Amako KA, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand GJ, Behner F. GEANT4—a simulation toolkit. Nucl Instrum Methods Phys Res, Sect A. 2003;506(3):250–303.

Article  CAS  Google Scholar 

Allison J, Amako K, Apostolakis JE, Araujo HA, Dubois PA, Asai MA, Barrand GA, Capra RA, Chauvie SA, Chytracek RA, Cirrone GA. Geant4 developments and applications. IEEE Trans Nucl Sci. 2006;53(1):270–8.

Article  Google Scholar 

Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand GJ, Beck BR. Recent developments in Geant4. Nucl Instrum Methods Phys Res, Sect A. 2016;1(835):186–225.

Article  Google Scholar 

Paganetti H, Gottschalk B. Test of GEANT3 and GEANT4 nuclear models for 160 MeV protons stopping in. Med Phys. 2003;30(7):1926–31.

Article  CAS  PubMed  Google Scholar 

Jarlskog CZ, Paganetti H. Physics settings for using the Geant4 toolkit in proton therapy. IEEE Trans Nucl Sci. 2008;55(3):1018–25.

Article  CAS  Google Scholar 

Paganetti H, Jiang H, Lee SY, Kooy HM. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility. Med Phys. 2004;31(7):2107–18.

Article  CAS  PubMed  Google Scholar 

Paganetti H, Jiang H, Parodi K, Slopsema R, Engelsman M. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy. Phys Med Biol. 2008;53(17):4825.

Article  PubMed  Google Scholar 

Clasie B, Wroe A, Kooy H, Depauw N, Flanz J, Paganetti H, Rosenfeld A. Assessment of out-of-field absorbed dose and equivalent dose in proton fields. Med Phys. 2010;37(1):311–21.

Article  CAS  PubMed  Google Scholar 

Gottschalk B, Platais R, Paganetti H. Nuclear interactions of 160 MeV protons stopping in copper: a test of Monte Carlo nuclear models. Med Phys. 1999;26(12):2597–601.

Article  CAS  PubMed  Google Scholar 

Paganetti H. Monte Carlo calculations for absolute dosimetry to determine machine outputs for proton therapy fields. Phys Med Biol. 2006;51(11):2801.

Article  PubMed  PubMed Central  Google Scholar 

Peterson SW, Polf J, Bues M, Ciangaru G, Archambault L, Beddar S, Smith A. Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons. Phys Med Biol. 2009;54(10):3217.

Article  CAS  PubMed  Google Scholar 

Schuemann J, McNamara AL, Ramos-Méndez J, Perl J, Held KD, Paganetti H, Incerti S, Faddegon B. TOPAS-nBio: an extension to the TOPAS simulation toolkit for cellular and sub-cellular radiobiology. Radiat Res. 2019;191(2):125–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Incerti S, Kyriakou I, Bernal MA, Bordage MC, Francis Z, Guatelli S, Ivanchenko V, Karamitros M, Lampe N, Lee SB, Meylan S. Geant4-DNA example applications for track structure simulations in liquid water: a report from the Geant4-DNA Project. Med Phys. 2018;45(8):e722–39.

Article  CAS  Google Scholar 

Bernal MA, Bordage MC, Brown JM, Davídková M, Delage E, El Bitar Z, Enger SA, Francis Z, Guatelli S, Ivanchenko VN, Karamitros M. Track structure modeling in liquid water: a review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Physica Med. 2015;31(8):861–74.

Article  CAS  Google Scholar 

Incerti S, Ivanchenko A, Karamitros M, Mantero A, Moretto P, Tran HN, Mascialino B, Champion C, Ivanchenko VN, Bernal MA, Francis Z. Comparison of GEANT4 very low energy cross section models with experimental data in water. Med Phys. 2010;37(9):4692–708.

Article  CAS  PubMed  Google Scholar 

Incerti S, Baldacchino G, Bernal M, Capra R, Champion C, Francis Z, Gueye P, Mantero A, Mascialino B, Moretto P, Nieminen P. The geant4-dna project. Int J Model Simul Sci Comput. 2010;1(02):157–78.

Article  Google Scholar 

McNamara A, Geng C, Turner R, Mendez JR, Perl J, Held K, Faddegon B, Paganetti H, Schuemann J. Validation of the radiobiology toolkit TOPAS-nBio in simple DNA geometries. Physica Med. 2017;1(33):207–15.

Article  Google Scholar 

Ramos-Méndez J, LaVerne JA, Domínguez-Kondo N, Milligan J, Štěpán V, Stefanová K, Perrot Y, Villagrasa C, Shin WG, Incerti S, McNamara A. TOPAS-nBio validation for simulating water radiolysis and DNA damage under low-LET irradiation. Phys Med Biol. 2021;66(17): 175026.

Article  Google Scholar 

Derksen L, Pfuhl T, Engenhart-Cabillic R, Zink K, Baumann KS. Investigating the feasibility of TOPAS-nBio for Monte Carlo track structure simulations by adapting GEANT4-DNA examples application. Phys Med Biol. 2021;66(17): 175023.

Article  CAS  Google Scholar 

Van Delinder KW, Khan R, Gräfe JL. Radiobiological impact of gadolinium neutron capture from proton therapy and alternative neutron sources using TOPAS-nBio. Med Phys. 2021;48(7):4004–16.

Article  PubMed  Google Scholar 

Zhu H, McNamara AL, McMahon SJ, Ramos-Mendez J, Henthorn NT, Faddegon B, Held KD, Perl J, Li J, Paganetti H, Schuemann J. Cellular response to proton irradiation: a simulation study with TOPAS-nBio. Radiat Res. 2020;194(1):9–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klapproth AP, Schuemann J, Stangl S, Xie T, Li WB, Multhoff G. Multi-scale Monte Carlo simulations of gold nanoparticle-induced DNA damages for kilovoltage X-ray irradiation in a xenograft mouse model using TOPAS-nBio. Cancer Nanotechnol. 2021;12:1–8.

Article  Google Scholar 

Ramos-Méndez J, García-García O, Domínguez-Kondo J, LaVerne JA, Schuemann J, Moreno-Barbosa E, Faddegon B. TOPAS-nBio simulation of temperature-dependent indirect DNA strand break yields. Phys Med Biol. 2022;67(14): 145007.

Article 

留言 (0)

沒有登入
gif