Ilcheva M, Nikolova P, Hadzhiyska V, Mladenov K. Impact of FDG PET/CT on detection of synchronous and metachronous malignancies and clinical management in patients with multiple primary cancers. Neoplasma. 2022;69:948–56. https://doi.org/10.4149/neo2022220203N135.
Article CAS PubMed Google Scholar
Vandenberghe S, Moskal P, Karp J. State of the art in total body PET. EJNMMI Phys. 2020;7:7–35. https://doi.org/10.1186/s40658-020-00290-2.
Dadgar M, Parzych S, Tayefi Ardebili F. A simulation study to estimate optimum LOR angular acceptance for the image reconstruction with the Total-Body J-PET. In Annual conference on medical image understanding and analysis 2021 (pp. 189-200). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-80432-915
Moskal P, Stepien E. Prospects and clinical perspectives of total-body pet imaging using plastic scintillators. PET Clin. 2020;15(4):439–52. https://doi.org/10.1016/j.cpet.2020.06.009.
Spencer B, Berg E, Schmall J, Omidvari N, et al. Performance evaluation of the uEXPLORER total-body PET/CT scanner based on NEMA NU 2–2018 with additional tests to characterize PET scanners with a long axial field of view. J Nucl Med. 2021;62:861–70. https://doi.org/10.2967/jnumed.120.250597.
Article PubMed PubMed Central Google Scholar
Karp J, Viswanath V, Geagan M, Muehllehner G, Pantel A, et al. Pennpet explorer: design and preliminary performance of a whole-body imager. J Nucl Med. 2020;61:136–43. https://doi.org/10.2967/jnumed.119.229997.
Article CAS PubMed PubMed Central Google Scholar
Pantel A, Viswanath V, Daube-Witherspoon M, Dubroff J, et al. Pennpet explorer: human imaging on a whole-body imager. J Nucl Med. 2020;61:144–51. https://doi.org/10.2967/jnumed.119.231845.
Article CAS PubMed PubMed Central Google Scholar
Alberts I, Hünermund JN, Prenosil G, Mingels C, Bohn KP, Viscione M, Sari H, Vollnberg B, Shi K, Afshar-Oromieh A, Rominger A. Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the biograph vision Quadra with the biograph vision PET/CT. Eur J Nucl Med Mol Imaging. 2021;48:2395–404. https://doi.org/10.1007/s00259-021-05282-7.
Article CAS PubMed PubMed Central Google Scholar
Prenosil GA, Sari H, Fürstner M, Afshar-Oromieh A, Shi K, Rominger A, Hentschel M. Performance characteristics of the biograph vision Quadra PET/CT system with a long axial field of view using the NEMA NU 2–2018 standard. J Nucl Med. 2022;63(3):476–84. https://doi.org/10.2967/jnumed.121.261972.
Article CAS PubMed Google Scholar
Cherry S, Jones T, Karp J, Qi J, et al. Total-body pet: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59:3–12. https://doi.org/10.2967/jnumed.116.184028.
Article CAS PubMed PubMed Central Google Scholar
Dadgar M, Parzych S, Baran J, et al. Comparative studies of the sensitivities of sparse and full geometries of total-body pet scanners built from crystals and plastic scintillators. EJNMMI Phys. 2023;10:62. https://doi.org/10.1186/s40658-023-00572-5.
Article CAS PubMed PubMed Central Google Scholar
Vandenberghe S, Muller F, Withofs N, Dadgar M, et al. Walk-through flat panel total-body PET: a patient-centered design for high throughput imaging at lower cost using DOI-capable high-resolution monolithic detectors. Eur J Nucl Med Mol Imaging. 2023;50:3558–71. https://doi.org/10.1007/s00259-023-06341-x.
Article CAS PubMed PubMed Central Google Scholar
Vandenberghe S, Karakatsanis NA, Akl MA, Maebe J, Surti S, Dierckx RA, Pryma DA, Nehmeh SA, Bouhali O, Karp JS. The potential of a medium-cost long axial FOV PET system for nuclear medicine departments. Eur J Nucl Med Mol Imaging. 2023;50(3):652–60.
Abi-Akl M, Dadgar M, Toufique Y, et al. Monte Carlo simulation of the system performance of a long axial field-of-view pet based on monolithic lyso detectors. EJNMMI Phys. 2023. https://doi.org/10.1186/s40658-023-00559-2.
Article PubMed PubMed Central Google Scholar
Dadgar M, Kowalski P. Gate simulation study of the 24-module j-pet scanner: data analysis and image reconstruction. Acta Phys Pol B. 2020;51:309–15. https://doi.org/10.5506/aphyspolb.51.309.
Borys D, Baran J, Brzezinski K, et al. Protheramon—a gate simulation framework for proton therapy range monitoring using pet imaging. Phys Med Biol. 2022;67: 224002. https://doi.org/10.1088/1361-6560/ac944c.
Dadgar M, Parzych S, Tayefi Ardebili F, et al. Investigation of novel preclinical total body pet designed with J-PET technology: a simulation study. IEEE Trans Radiat Plasma Med Sci. 2023;7:124–31. https://doi.org/10.1109/TRPMS.2022.3211780.
Dadgar M, Parzych S, Tayefi Ardebili F, Moskal P, Vandenberghe S. Introduction of the DOI capable Total-Body J-PET, a simulation study. J Nucl Med. 2022;63(supplement 2):3316.
Dadgar M, Maebe J, Abi Akl M, Vervenne B, Vandenberghe S. A simulation study of the system characteristics for a long axial FOV PET design based on monolithic BGO flat panels compared with a pixelated LSO cylindrical design. EJNMMI Phys. 2023;10:75.
Article PubMed PubMed Central Google Scholar
Vandenberghe S, Abi Akl M, Withofs N, Muller FM, Maebe J, Dadgar M, et al. Efficient patient throughput and detector usage in low cost efficient monolithic high resolution walk-through flat panel total body PET. In: Total-Body PET 2022, Abstracts. 2022. pp. 28–29
Maebe J, Vandenberghe S. Effect of detector geometry and surface finish on cerenkov based time estimation in monolithic BGO detectors. Phys Med Biol. 2023;68: 025009. https://doi.org/10.1088/1361-6560/acabfd.
Maebe J, Vandenberghe S. Simulation study on 3D convolutional neural networks for time-of-flight prediction in monolithic pet detectors using digitized waveforms. Phys Med Biol. 2022;67: 125016. https://doi.org/10.1088/1361-6560/ac73d3.
Muller F, Vanhove C, Vandeghinste B, Vandenberghe S. Performance evaluation of a micro-ct system for laboratory animal imaging with iterative reconstruction capabilities. Med Phys. 2022;49:3121–33. https://doi.org/10.1002/mp.15538.
Stockhoff M, Van Holen R, Vandenberghe S. Optical simulation study on the spatial resolution of a thick monolithic pet detector. Phys Med Biol. 2019;64: 195003. https://doi.org/10.1088/1361-6560/ab3b83.
Article CAS PubMed Google Scholar
Cancer data: World cancer research fund international, W. WCRF International https://www.wcrf.org/cancer-trends/worldwide-cancer-data/ (2022).
Sarrut D, Bala M, Bardies M, et al. Advanced monte carlo simulations of emission tomography imaging systems with gate. Phys Med Biol. 2021;14:55–10. https://doi.org/10.1088/1361-6560/abf276.
Moskal P, Kowalski P, Shopa R, Raczynski L, et al. Simulating nema characteristics of the modular total-body J-PET scanner-an economic total-body pet from plastic scintillators. Phys Med Biol. 2021. https://doi.org/10.1088/1361-6560/ac16bd.
Carra P, Giuseppina Bisogni M, Ciarrocchi E, Morrocchi M, Sportelli G, Rosso V, Belcari N. A neural network-based algorithm for simultaneous event positioning and timestamping in monolithic scintillators. Phys Med Biol. 2022;67: 135001. https://doi.org/10.1088/1361-6560/ac72f2.
Segars W, Sturgeon G, Mendonca S, Grimes J, Tsui B. 4D XCAT phantom for multimodality imaging research. Med Phys. 2010;37:4902–15. https://doi.org/10.1118/1.3480985.
Article CAS PubMed PubMed Central Google Scholar
Segars W, Veress A, Sturgeon G, Samei E. Incorporation of the living heart model into the 4D XCAT phantom for cardiac imaging research. IEEE Trans Radiat Plasma Med Sci. 2019;3:54–60. https://doi.org/10.1109/TRPMS.2018.2823060.
Fedrigo R, Segars W, Martineau P, Gowdy C, et al. Development of scalable lymphatic system in the 4D XCAT phantom: application to quantitative evaluation of lymphoma pet segmentations. Med Phys. 2022;49:6871–84. https://doi.org/10.1002/mp.15963.
Article CAS PubMed Google Scholar
Segars W, Bond J, Frush J, Hon S, et al. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization. Med Phys. 2013;40: 043701. https://doi.org/10.1118/1.4794178.
Article CAS PubMed PubMed Central Google Scholar
Van Sluis J, Boellaard R, Dierckx R, Stormezand G, et al. Image quality and activity optimization in oncologic 18f-fdg pet using the digital biograph vision PET/CT system. J Nucl Med. 2020;61:764–71. https://doi.org/10.2967/jnumed.119.234351.
Gruber J, Decristoforo C, Uprimny P, Schoenberg S, et al. Imaging properties and tumor targeting of 68ga-neobomb1, a gastrin-releasing peptide receptor antagonist, in gist patients. Biomedicines. 2022;10:11–2899. https://doi.org/10.3390/biomedicines10112899.
Nievelstein RA, Quarles van Ufford HM, Kwee TC, Bierings MB, Ludwig I, Beek FJ, de Klerk JM, Mali WP, de Bruin PW, Geleijns J. Radiation exposure and mortality risk from CT and PET imaging of patients with malignant lymphoma. Eur Radiol. 2012;22(9):1946–54. https://doi.org/10.1007/s00330-012-2447-9.
Article CAS PubMed PubMed Central Google Scholar
Cheng X, Yang D, Zhong Y, Shao Y. Real-time marker-less tumor tracking with TOF PET: in silicofeasibility study. Phys Med Biol. 2022;67:11. https://doi.org/10.1088/1361-6560/ac6d9f.
Adu-Poku O. Image quality assessment using NEMA standards for lu-177 radionuclide. IJMPCERO. 2022;10:125–34. https://doi.org/10.4236/ijmpcero.2022.113011.
Comments (0)