A review of PET attenuation correction methods for PET-MR

Ehman EC, Johnson GB, Villanueva-Meyer JE, Cha S, Leynes AP, Larson PEZ, et al. PET/MRI: where might it replace PET/CT? J Magn Reson Imaging. 2017;46:1247–62. https://doi.org/10.1002/jmri.25711.

Article  PubMed  PubMed Central  Google Scholar 

Zhu T, Das S, Wong TZ. Integration of PET/MR hybrid imaging into radiation therapy treatment. Magn Reson Imaging Clin N Am. 2017;25:377–430. https://doi.org/10.1016/j.mric.2017.01.001.

Article  PubMed  Google Scholar 

Carney JP, Townsend DW, Rappoport V, Bendriem B. Method for transforming CT images for attenuation correction in PET/CT imaging. Med Phys. 2006;33:976–83. https://doi.org/10.1118/1.2174132.

Article  PubMed  Google Scholar 

Berker Y, Li Y. Attenuation correction in emission tomography using the emission data: a review. Med Phys. 2016;43:807–32. https://doi.org/10.1118/1.4938264.

Article  PubMed  PubMed Central  Google Scholar 

Hofmann M, Pichler B, Scholkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):S93-104. https://doi.org/10.1007/s00259-008-1007-7.

Article  PubMed  Google Scholar 

Lillington J, Brusaferri L, Klaser K, Shmueli K, Neji R, Hutton BF, et al. PET/MRI attenuation estimation in the lung: a review of past, present, and potential techniques. Med Phys. 2020;47:790–811. https://doi.org/10.1002/mp.13943.

Article  PubMed  Google Scholar 

Mecheter I, Alic L, Abbod M, Amira A, Ji J. MR image-based attenuation correction of brain PET imaging: review of literature on machine learning approaches for segmentation. J Digit Imaging. 2020;33:1224–41. https://doi.org/10.1007/s10278-020-00361-x.

Article  PubMed  PubMed Central  Google Scholar 

Wang T, Lei Y, Fu Y, Curran WJ, Liu T, Nye JA, et al. Machine learning in quantitative PET: a review of attenuation correction and low-count image reconstruction methods. Phys Med. 2020;76:294–306. https://doi.org/10.1016/j.ejmp.2020.07.028.

Article  PubMed  PubMed Central  Google Scholar 

Teuho J, Torrado-Carvajal A, Herzog H, Anazodo U, Klén R, Iida H, et al. Magnetic resonance-based attenuation correction and scatter correction in neurological positron emission tomography/magnetic resonance imaging—current status with emerging applications. Front Phys-Lausanne. 2020;7. https://doi.org/10.3389/fphy.2019.00243.

Wagenknecht G, Kaiser HJ, Mottaghy FM, Herzog H. MRI for attenuation correction in PET: methods and challenges. MAGMA. 2013;26:99–113. https://doi.org/10.1007/s10334-012-0353-4.

Article  PubMed  Google Scholar 

Mehranian A, Arabi H, Zaidi H. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: challenges, solutions, and opportunities. Med Phys. 2016;43:1130–55. https://doi.org/10.1118/1.4941014.

Article  PubMed  Google Scholar 

Lamare F, Bousse A, Thielemans K, Liu C, Merlin T, Fayad H, et al. PET respiratory motion correction: quo vadis? Phys Med Biol. 2022;67. https://doi.org/10.1088/1361-6560/ac43fc.

Ouyang J, Li Q, El Fakhri G. Magnetic resonance-based motion correction for positron emission tomography imaging. Semin Nucl Med. 2013;43:60–7. https://doi.org/10.1053/j.semnuclmed.2012.08.007.

Article  PubMed  PubMed Central  Google Scholar 

Zaitsev M, Maclaren J, Herbst M. Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging. 2015;42:887–901. https://doi.org/10.1002/jmri.24850.

Article  PubMed  PubMed Central  Google Scholar 

Rofsky NM, Lee VS, Laub G, Pollack MA, Krinsky GA, Thomasson D, et al. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology. 1999;212:876–84. https://doi.org/10.1148/radiology.212.3.r99se34876.

Article  CAS  PubMed  Google Scholar 

von Felten E, Benetos G, Patriki D, Benz DC, Rampidis GP, Giannopoulos AA, et al. Myocardial creep-induced misalignment artifacts in PET/MR myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2021;48:406–13. https://doi.org/10.1007/s00259-020-04956-y.

Article  CAS  Google Scholar 

Delso G, Khalighi M, Ter Voert E, Barbosa F, Sekine T, Hullner M, et al. Effect of time-of-flight information on PET/MR reconstruction artifacts: comparison of free-breathing versus breath-hold MR-based attenuation correction. Radiology. 2017;282:229–35. https://doi.org/10.1148/radiol.2016152509.

Article  PubMed  Google Scholar 

Nye JA, Hamill J, Tudorascu D, Carew J, Esteves F, Votaw JR. Comparison of low-pitch and respiratory-averaged CT protocols for attenuation correction of cardiac PET studies. Med Phys. 2009;36:1618–23. https://doi.org/10.1118/1.3112362.

Article  PubMed  Google Scholar 

Gilman MD, Fischman AJ, Krishnasetty V, Halpern EF, Aquino SL. Optimal CT breathing protocol for combined thoracic PET/CT. AJR Am J Roentgenol. 2006;187:1357–60. https://doi.org/10.2214/AJR.05.1427.

Article  PubMed  Google Scholar 

Vogt FM, Antoch G, Hunold P, Maderwald S, Ladd ME, Debatin JF, et al. Parallel acquisition techniques for accelerated volumetric interpolated breath-hold examination magnetic resonance imaging of the upper abdomen: assessment of image quality and lesion conspicuity. J Magn Reson Imaging. 2005;21:376–82. https://doi.org/10.1002/jmri.20288.

Article  PubMed  Google Scholar 

Yang J, Liu J, Wiesinger F, Menini A, Zhu X, Hope TA, et al. Developing an efficient phase-matched attenuation correction method for quiescent period PET in abdominal PET/MRI. Phys Med Biol. 2018;63:185002. https://doi.org/10.1088/1361-6560/aada26.

Munoz C, Ellis S, Nekolla SG, Kunze KP, Vitadello T, Neji R, et al. MR-guided motion-corrected PET image reconstruction for cardiac PET-MR. J Nucl Med. 2021. https://doi.org/10.2967/jnumed.120.254235.

Article  PubMed  PubMed Central  Google Scholar 

Chun SY, Reese TG, Ouyang J, Guerin B, Catana C, Zhu X, et al. MRI-based nonrigid motion correction in simultaneous PET/MRI. J Nucl Med. 2012;53:1284–91. https://doi.org/10.2967/jnumed.111.092353.

Article  PubMed  Google Scholar 

Wollenweber SD, Ambwani S, Lonn AHR, Shanbhag DD, Thiruvenkadam S, Kaushik S, et al. Comparison of 4-class and continuous fat/water methods for whole-body, MR-based PET attenuation correction. IEEE Trans Nucl Sci. 2013;60:3391–8.

Article  Google Scholar 

Azevedo RM, de Campos RO, Ramalho M, Heredia V, Dale BM, Semelka RC. Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. AJR Am J Roentgenol. 2011;197:650–7. https://doi.org/10.2214/AJR.10.5881.

Article  PubMed  Google Scholar 

Beyer T, Weigert M, Quick HH, Pietrzyk U, Vogt F, Palm C, et al. MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. Eur J Nucl Med Mol Imaging. 2008;35:1142–6. https://doi.org/10.1007/s00259-008-0734-0.

Article  PubMed  Google Scholar 

Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. elastix: A toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29:196–205. https://doi.org/10.1109/Tmi.2009.2035616.

Article  PubMed  Google Scholar 

Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153:189–94. https://doi.org/10.1148/radiology.153.1.6089263.

Article  CAS  PubMed  Google Scholar 

Dickson JC, O’Meara C, Barnes A. A comparison of CT- and MR-based attenuation correction in neurological PET. Eur J Nucl Med Mol Imaging. 2014;41:1176–89. https://doi.org/10.1007/s00259-013-2652-z.

Article  PubMed  Google Scholar 

Paulus DH, Quick HH, Geppert C, Fenchel M, Zhan Y, Hermosillo G, et al. Whole-body PET/MR Imaging: quantitative evaluation of a novel model-based MR attenuation correction method including bone. J Nucl Med. 2015;56:1061–6. https://doi.org/10.2967/jnumed.115.156000.

Article  PubMed  Google Scholar 

Koesters T, Friedman KP, Fenchel M, Zhan YQ, Hermosillo G, Babb J, et al. Dixon sequence with superimposed model-based bone compartment provides highly accurate PET/MR attenuation correction of the brain. J Nucl Med. 2016;57:918–24. https://doi.org/10.2967/jnumed.115.166967.

Article  CAS  PubMed  Google Scholar 

Akbarzadeh A, Ay MR, Ahmadian A, Alam NR, Zaidi H. MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med. 2013;27:152–62. https://doi.org/10.1007/s12149-012-0667-3.

Article  CAS  PubMed  Google Scholar 

Bezrukov I, Schmidt H, Gatidis S, Mantlik F, Schafer JF, Schwenzer N, et al. Quantitative evaluation of segmentation- and atlas-based attenuation correction for PET/MR on pediatric patients. J Nucl Med. 2015;56:1067–74. https://doi.org/10.2967/jnumed.114.149476.

Article  PubMed  Google Scholar 

Arabi H, Rager O, Alem A, Varoquaux A, Becker M, Zaidi H. Clinical assessment of MR-guided 3-class and 4-class attenuation correction in PET/MR. Mol Imaging Biol. 2015;17:264–76. https://doi.org/10.1007/s11307-014-0777-5.

Article  CAS  PubMed  Google Scholar 

Andersen FL, Ladefoged CN, Beyer T, Keller SH, Hansen AE, Hojgaard L, et al. Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. Neuroimage. 2014;84:206–16. https://doi.org/10.1016/j.neuroimage.2013.08.042.

Article  PubMed  Google Scholar 

Ladefoged CN, Law I, Anazodo U, St Lawrence K, Izquierdo-Garcia D, Catana C, et al. A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. Neuroimage. 2017;147:346–59. https://doi.org/10.1016/j.neuroimage.2016.12.010.

Article  PubMed  Google Scholar 

Marshall HR, Patrick J, Laidley D, Prato FS, Butler J, Theberge J, et al. Description and assessment of a registration-based approach to include bones for attenuation correction of whole-body PET/MRI. Med Phys. 2013;40:082509. https://doi.org/10.1118/1.4816301.

Arabi H, Zeng GD, Zheng GY, Zaidi H. Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI. Eur J Nucl Med Mol. 2019;I(46):2746–59. https://doi.org/10.1007/s00259-019-04380-x.

Article 

留言 (0)

沒有登入
gif