A biallelic loss-of-function variant in TMEM147 causes profound intellectual disability and spasticity

Harripaul R, Noor A, Ayub M, Vincent JB (2017) The use of next-generation sequencing for research and diagnostics for intellectual disability. Cold Spring Harb Perspect Med 7(3). https://doi.org/10.1101/cshperspect.a026864

Hu H, Kahrizi K, Musante L, Fattahi Z, Herwig R, Hosseini M, Oppitz C, Abedini SS, Suckow V, Larti F, Beheshtian M (2019) Genetics of intellectual disability in consanguineous families. Mol Psychiatry 24(7):1027–1039. https://doi.org/10.1038/s41380-017-0012-2

Article  CAS  PubMed  Google Scholar 

Reuter MS et al (2017) Diagnostic yield and novel candidate genes by exome sequencing in 152 consanguineous families with neurodevelopmental disorders. JAMA Psychiatry 74(3):293–299. https://doi.org/10.1001/jamapsychiatry.2016.3798

Article  PubMed  Google Scholar 

Dettmer U, Kuhn PH, Abou-Ajram C et al (2010) Transmembrane protein 147 (TMEM147) is a novel component of the Nicalin-NOMO protein complex. J Biol Chem 285(34):26174–26181. https://doi.org/10.1074/jbc.M110.132548

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosemond E, Rossi M, McMillin SM, Scarselli M, Donaldson JG, Wess J (2011) Regulation of M3 muscarinic receptor expression and function by transmembrane protein 147. Mol Pharmacol 79(2):251–261. https://doi.org/10.1124/mol.110.067363

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christodoulou A, Maimaris G, Makrigiorgi A et al (2020) TMEM147 interacts with lamin B receptor, regulates its localization and levels, and affects cholesterol homeostasis. J Cell Sci 133(16). https://doi.org/10.1242/jcs.245357

Duband-Goulet I, Courvalin JC, Buendia B (1998) LBR a chromatin and lamin binding protein from the inner nuclear membrane, is proteolyzed at late stages of apoptosis. J Cell Sci 111(10):1441–1451. https://doi.org/10.1242/jcs.111.10.1441

Article  CAS  PubMed  Google Scholar 

Koczok K, Gurumurthy CB, Balogh I, Korade Z, Mirnics K (2019) Subcellular localization of sterol biosynthesis enzymes. J Mol Histol 50(1):63–73. https://doi.org/10.1007/s10735-018-9807-y

Article  PubMed  Google Scholar 

McGilvray PT, Anghel SA, Sundaram A et al (2020) An ER translocon for multi-pass membrane protein biogenesis. Elife 9. https://doi.org/10.7554/eLife.56889

Thomas Q, Motta M, Gautier T et al (2022) Bi-allelic loss-of-function variants in TMEM147 cause moderate to profound intellectual disability with facial dysmorphism and pseudo-Pelger-Huët anomaly. Am J Hum Genet 109(10):1909–1922. https://doi.org/10.1016/j.ajhg.2022.08.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sundaram A, Yamsek M, Zhong F, Hooda Y, Hegde RS, Keenan RJ (2022) Substrate-driven assembly of a translocon for multipass membrane proteins. Nature 611(7934):167–172. https://doi.org/10.1038/s41586-022-05330-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5):589–595. https://doi.org/10.1093/bioinformatics/btp698

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164. https://doi.org/10.1093/nar/gkq603

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karczewski KJ, Francioli LC, Tiao G et al (2021) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 590(7846):E53. https://doi.org/10.1038/s41586-020-2308-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

Article  PubMed  PubMed Central  Google Scholar 

Oosterwijk JC, Mansour S, van Noort G, Waterham HR, Hall CM, Hennekam RC (2003) Congenital abnormalities reported in Pelger-Huët homozygosity as compared to Greenberg/HEM dysplasia: highly variable expression of allelic phenotypes. J Med Genet 40(12):937–941. https://doi.org/10.1136/jmg.40.12.937

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffmann K, Dreger CK, Olins AL et al (2002) Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huët anomaly). Nat Genet 31(4):410–414. https://doi.org/10.1038/ng925

Article  CAS  PubMed  Google Scholar 

Bolar NA, Golzio C, Živná M et al (2016) Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia. Am J Hum Genet 99(1):174–187. https://doi.org/10.1016/j.ajhg.2016.05.028

Article  CAS  PubMed  PubMed Central  Google Scholar 

Graham HK et al (2015) Cerebral palsy. Nat Rev Dis Prim 2(1):15082. https://doi.org/10.1038/nrdp.2015.82

Article  Google Scholar 

Korzeniewski SJ, Slaughter J, Lenski M, Haak P, Paneth N (2018) The complex aetiology of cerebral palsy. Nat Rev Neurol 14(9):528–543. https://doi.org/10.1038/s41582-018-0043-6

Article  PubMed  Google Scholar 

Michael-Asalu A, Taylor G, Campbell H et al (2019) Cerebral palsy: diagnosis, epidemiology, genetics, and clinical update. Adv Pediatr 66:189–208. https://doi.org/10.1016/j.yapd.2019.04.002

Article  PubMed  Google Scholar 

Radio FC, Pang K, Ciolfi A et al (2021) SPEN haploinsufficiency causes a neurodevelopmental disorder overlapping proximal 1p36 deletion syndrome with an episignature of X chromosomes in females. Am J Hum Genet 108(3):502–516. https://doi.org/10.1016/j.ajhg.2021.01.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif