Genetic blueprint of congenital muscular dystrophies with brain malformations in Egypt: A report of 11 families

Kang PB, Morrison L, Iannaccone ST, Graham RJ, Bonnemann CG, Rutkowski A et al (2015) Evidence-based guideline summary: evaluation, diagnosis, and management of congenital muscular dystrophy: Report of the guideline development subcommittee of the american academy of neurology and the practice issues review panel of the american association of neuromuscular & electrodiagnostic medicine. Neurology 84(13):1369–1378

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanagawa M (2021) Dystroglycanopathy: From Elucidation of Molecular and Pathological Mechanisms to Development of Treatment Methods. Int J Mol Sci 22(23):13162

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oliveira J, Gruber A, Cardoso M, Taipa R, Fineza I, Goncalves A et al (2018) LAMA2 gene mutation update: Toward a more comprehensive picture of the laminin-alpha2 variome and its related phenotypes. Hum Mutat 39(10):1314–1337

Article  CAS  PubMed  Google Scholar 

Bouchet-Séraphin C, Vuillaumier-Barrot S, Seta N (2015) Dystroglycanopathies: About Numerous Genes Involved in Glycosylation of One Single Glycoprotein. J Neuromuscul Dis 2(1):27–38

Article  PubMed  Google Scholar 

Sframeli M, Sarkozy A, Bertoli M, Astrea G, Hudson J, Scoto M et al (2017) Congenital muscular dystrophies in the UK population: Clinical and molecular spectrum of a large cohort diagnosed over a 12-year period. Neuromuscul Disord 27(9):793–803

Article  PubMed  Google Scholar 

Graziano A, Bianco F, D’Amico A, Moroni I, Messina S, Bruno C et al (2015) Prevalence of congenital muscular dystrophy in Italy: a population study. Neurology 84(9):904–911

Article  PubMed  PubMed Central  Google Scholar 

El-Tallawy HN, Khedr EM, Qayed MH, Helliwell TR, Kamel NF (2005) Epidemiological study of muscular disorders in Assiut, Egypt. Neuroepidemiology 25(4):205–211

Article  PubMed  Google Scholar 

Manzini MC, Gleason D, Chang BS, Hill RS, Barry BJ, Partlow JN et al (2008) Ethnically diverse causes of Walker-Warburg syndrome (WWS): FCMD mutations are a more common cause of WWS outside of the Middle East. Hum Mutat 29(11):E231–E241

Article  PubMed  PubMed Central  Google Scholar 

Song D, Dai Y, Chen X, Fu X, Chang X, Wang N et al (2021) Genetic variations and clinical spectrum of dystroglycanopathy in a large cohort of Chinese patients. Clin Genet 99(3):384–395

Article  CAS  PubMed  Google Scholar 

Kondo-Iida E, Kobayashi K, Watanabe M, Sasaki J, Kumagai T, Koide H et al (1999) Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet 8(12):2303–2309

Article  CAS  PubMed  Google Scholar 

Ko YJ, Cho A, Kim WJ, Kim SY, Lim BC, Kim H et al (2023) Broad spectrum of phenotype and genotype in Korean α-dystroglycan related muscular dystrophy presenting to a tertiary pediatric neuromuscular center. Neuromuscul Disord 33(5):425–431

Article  PubMed  Google Scholar 

Chang W, Winder TL, LeDuc CA, Simpson LL, Millar WS, Dungan J et al (2009) Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families. Prenat Diagn 29(6):560–569

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Grady GL, Lek M, Lamande SR, Waddell L, Oates EC, Punetha J et al (2016) Diagnosis and etiology of congenital muscular dystrophy: We are halfway there. Ann Neurol 80(1):101–111

Article  CAS  PubMed  Google Scholar 

Allamand V, Guicheney P (2002) Merosin-deficient congenital muscular dystrophy, autosomal recessive (MDC1A, MIM#156225, LAMA2 gene coding for alpha2 chain of laminin). Eur J Hum Genet 10(2):91–94

Article  CAS  PubMed  Google Scholar 

Lavelle TA, Feng X, Keisler M, Cohen JT, Neumann PJ, Prichard D et al (2022) Cost-effectiveness of exome and genome sequencing for children with rare and undiagnosed conditions. Genet Med 24(11):2415–2417

Article  CAS  PubMed  Google Scholar 

Wiener EK, Buchanan J, Krause A, Lombard Z (2023) Retrospective file review shows limited genetic services fails most patients - an argument for the implementation of exome sequencing as a first-tier test in resource-constraint settings. Orphanet J Rare Dis 18(1):81

Article  PubMed  PubMed Central  Google Scholar 

Ababneh NA, Ali D, Al-Kurdi B, Barham R, Bsisu IK, Dababseh D et al (2021) The utility of whole-exome sequencing in accurate diagnosis of neuromuscular disorders in consanguineous families in Jordan. Clin Chim Acta 523:330–338

Article  CAS  PubMed  Google Scholar 

Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P (2015) Sambamba: fast processing of NGS alignment formats. Bioinformatics 31(12):2032–2034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A et al (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43(1110):11.0.1-11.0.33

Google Scholar 

Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164

Article  PubMed  PubMed Central  Google Scholar 

Scott EM, Halees A, Itan Y, Spencer EG, He Y, Azab MA et al (2016) Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nat Genet 48(9):1071–1076

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 76:7.20.1–7.20.41

Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M (2019) CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47(D1):D886–D894

Article  CAS  PubMed  Google Scholar 

Jaganathan K, KyriazopoulouPanagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI et al (2019) Predicting splicing from primary sequence with deep learning. Cell 176(3):535–48.e24

Article  CAS  PubMed  Google Scholar 

Plagnol V, Curtis J, Epstein M, Mok KY, Stebbings E, Grigoriadou S et al (2012) A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics 28(21):2747–2754

Article  CAS  PubMed  PubMed Central  Google Scholar 

Godfrey C, Clement E, Mein R, Brockington M, Smith J, Talim B et al (2007) Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 130(Pt 10):2725–2735

Article  PubMed  Google Scholar 

Kefi M, Amouri R, Chabrak S, Mechmeche R, Hentati F (2008) Variable cardiac involvement in Tunisian siblings harboring FKRP gene mutations. Neuropediatrics 39(2):113–115

Article  CAS  PubMed  Google Scholar 

Trovato R, Astrea G, Bartalena L, Ghirri P, Baldacci J, Giampietri M et al (2014) Elevated serum creatine kinase and small cerebellum prompt diagnosis of congenital muscular dystrophy due to FKRP mutations. J Child Neurol 29(3):394–398

Article  PubMed  Google Scholar 

Louhichi N, Triki C, Quijano-Roy S, Richard P, Makri S, Meziou M et al (2004) New FKRP mutations causing congenital muscular dystrophy associated with mental retardation and central nervous system abnormalities. Identification of a founder mutation in Tunisian families. Neurogenetics 5(1):27–34

Article  CAS  PubMed  Google Scholar 

Pegoraro E, Marks H, Garcia CA, Crawford T, Mancias P, Connolly AM et al (1998) Laminin alpha2 muscular dystrophy: genotype/phenotype studies of 22 patients. Neurology 51(1):101–110

Article  CAS  PubMed  Google Scholar 

Kim MW, Jang DH, Kang J, Lee S, Joo SY, Jang JH et al (2017) Novel mutation (c.8725T>C) in two siblings with late-onset LAMA2-related muscular dystrophy. Ann Lab Med 37(4):359–361

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zambon AA, Ridout D, Main M, Mein R, Phadke R, Muntoni F et al (2020) LAMA2-related muscular dystrophy: Natural history of a large pediatric cohort. Ann Clin Transl Neurol 7(10):1870–1882

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geranmayeh F, Clement E, Feng LH, Sewry C, Pagan J, Mein R et al (2010) Genotype-phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations. Neuromuscul Disord 20(4):241–250

Article  PubMed  Google Scholar 

Carboni N, Marrosu G, Porcu M, Mateddu A, Solla E, Cocco E et al (2011) Dilated cardiomyopathy with conduction defects in a patient with partial merosin deficiency due to mutations in the laminin-alpha2-chain gene: a chance association or a novel phenotype? Muscle Nerve 44(5):826–828

Article  CAS  PubMed

留言 (0)

沒有登入
gif