Genomic evidence for the suitability of Göttingen Minipigs with a rare seizure phenotype as a model for human epilepsy

Behr C, Goltzene MA, Kosmalski G et al (2016) Epidemiology of epilepsy. Rev Neurol (Paris) 172:27–36. https://doi.org/10.1016/j.neurol.2015.11.003

Article  CAS  PubMed  Google Scholar 

Hodges SL, Lugo JN (2018) Wnt/β-catenin signaling as a potential target for novel epilepsy therapies. Epilepsy Res 146:9–16. https://doi.org/10.1016/j.eplepsyres.2018.07.002

Article  CAS  PubMed  Google Scholar 

Wei F, Yan L-M, Su T et al (2017) Ion channel genes and epilepsy: functional alteration, pathogenic potential, and mechanism of epilepsy. Neurosci Bull 33:455–477. https://doi.org/10.1007/s12264-017-0134-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rho JM, Boison D (2022) The metabolic basis of epilepsy. Nat Rev Neurol 18:333–347. https://doi.org/10.1038/s41582-022-00651-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alqurashi RS, Yee AS, Malone T et al (2021) A Warburg-like metabolic program coordinates Wnt, AMPK, and mTOR signaling pathways in epileptogenesis. Plos One 16:e0252282. https://doi.org/10.1371/journal.pone.0252282

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Loo KMJ, Schaub C, Pernhorst K et al (2012) Transcriptional regulation of T-type calcium channel CaV3.2: bi-directionality by early growth response 1 (Egr1) and repressor element 1 (RE-1) protein-silencing transcription factor (REST). J Biol Chem 287:15489–15501. https://doi.org/10.1074/jbc.M111.310763

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chemin J, Monteil A, Perez-Reyes E et al (2002) Specific contribution of human T-type calcium channel isotypes (alpha(1G), alpha(1H) and alpha(1I)) to neuronal excitability. J Physiol 540:3–14. https://doi.org/10.1113/jphysiol.2001.013269

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khosravani H, Zamponi GW (2006) Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev 86:941–966. https://doi.org/10.1152/physrev.00002.2006

Article  CAS  PubMed  Google Scholar 

Marshall GF, Gonzalez-Sulser A, Abbott CM (2021) Modelling epilepsy in the mouse: challenges and solutions. Dis Model Mech 14:dmm047449. https://doi.org/10.1242/dmm.047449

Li S, Edlinger M, Saalfrank A et al (2015) Viable pigs with a conditionally-activated oncogenic KRAS mutation. Transgenic Res 24:509–517. https://doi.org/10.1007/s11248-015-9866-8

Article  CAS  PubMed  Google Scholar 

Pardo ID, Manno RA, Capobianco R et al (2021) Nervous system sampling for general toxicity and neurotoxicity studies in the laboratory minipig with emphasis on the Göttingen minipig. Toxicol Pathol 49:1140–1163. https://doi.org/10.1177/01926233211019941

Article  CAS  PubMed  Google Scholar 

Glud AN, Hedegaard C, Nielsen MS et al (2011) Direct MRI-guided stereotaxic viral mediated gene transfer of alpha-synuclein in the Göttingen minipig CNS. Acta Neurobiol Exp (Wars) 71:508–518

Article  PubMed  Google Scholar 

Nielsen MS, Glud AN, Møller A et al (2016) Continuous MPTP intoxication in the Göttingen minipig results in chronic parkinsonian deficits. Acta Neurobiol Exp (Wars) 76:199–211. https://doi.org/10.21307/ane-2017-020

Article  PubMed  Google Scholar 

Khan M, Gasser S (2016) Generating primary fibroblast cultures from mouse ear and tail tissues. J Vis Exp 107:53565. https://doi.org/10.3791/53565

Reimer C, Ha N-T, Sharifi AR et al (2020) Assessing breed integrity of Göttingen Minipigs. BMC Genomics 21:308. https://doi.org/10.1186/s12864-020-6590-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warr A, Affara N, Aken B et al. (2020) An improved pig reference genome sequence to enable pig genetics and genomics research. Gigascience 9:1–14. https://doi.org/10.1093/gigascience/giaa051

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim D, Paggi JM, Park C et al (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915. https://doi.org/10.1038/s41587-019-0201-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lawrence M, Huber W, Pagès H et al (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9:e1003118. https://doi.org/10.1371/journal.pcbi.1003118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

McLaren W, Gil L, Hunt SE et al (2016) The Ensembl Variant Effect Predictor. Genome Biol 17:122. https://doi.org/10.1186/s13059-016-0974-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Snel B, Lehmann G, Bork P et al (2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28:3442–3444. https://doi.org/10.1093/nar/28.18.3442

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu G, Wang L-G, Han Y et al (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287. https://doi.org/10.1089/omi.2011.0118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams G (2012) A searchable cross-platform gene expression database reveals connections between drug treatments and disease. BMC Genomics 13:12. https://doi.org/10.1186/1471-2164-13-12

Article  CAS  PubMed  PubMed Central  Google Scholar 

Otasek D, Morris JH, Bouças J et al (2019) Cytoscape Automation: empowering workflow-based network analysis. Genome Biol 20:185. https://doi.org/10.1186/s13059-019-1758-4

Article  PubMed  PubMed Central  Google Scholar 

Mi H, Muruganujan A, Thomas PD (2013) PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 41:D377–D386. https://doi.org/10.1093/nar/gks1118

Article  CAS  PubMed  Google Scholar 

Gearing LJ, Cumming HE, Chapman R et al (2019) CiiiDER: a tool for predicting and analysing transcription factor binding sites. Plos One 14:e0215495. https://doi.org/10.1371/journal.pone.0215495

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I et al (2022) JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res 50:D165–D173. https://doi.org/10.1093/nar/gkab1113

Article  CAS  PubMed  Google Scholar 

Curry PDK, Broda KL, Carroll CJ (2021) The role of RNA-sequencing as a new genetic diagnosis tool. Curr Genet Med Rep 9:13–21. https://doi.org/10.1007/s40142-021-00199-x

Article  Google Scholar 

Quach DH, Oliveira-Fernandes M, Gruner KA et al (2013) A sympathetic neuron autonomous role for Egr3-mediated gene regulation in dendrite morphogenesis and target tissue innervation. J Neurosci 33:4570–4583. https://doi.org/10.1523/JNEUROSCI.5481-12.2013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferron L, Novazzi CG, Pilch KS et al (2020) FMRP regulates presynaptic localization of neuronal voltage gated calcium channels. Neurobiol Dis 138:104779. https://doi.org/10.1016/j.nbd.2020.104779

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garner JP (2014) The significance of meaning: why do over 90% of behavioral neuroscience results fail to translate to humans, and what can we do to fix it? ILAR J 55:438–456. https://doi.org/10.1093/ilar/ilu047

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szabó CÁ, Salinas FS (2021) The baboon in epilepsy research: revelations and challenges. Epilepsy Behav 121:108012. https://doi.org/10.1016/j.yebeh.2021.108012

Article  PubMed  Google Scholar 

Hu X, Adebiyi MG, Luo J et al (2016) Sustained elevated adenosine via ADORA2B promotes chronic pain through neuro-immune interaction. Cell Rep 16:106–119. https://doi.org/10.1016/j.celrep.2016.05.080

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helbig KL, Lauerer RJ, Bahr JC et al (2018) De novo pathogenic variants in CACNA1E cause developmental and epileptic encephalopathy with contractures, macrocephaly, and dyskinesias. Am J Hum Genet 103:666–678. https://doi.org/10.1016/j.ajhg.2018.09.006

留言 (0)

沒有登入
gif