Simonati A, Williams RE (2022) Neuronal ceroid lipofuscinosis: the multifaceted approach to the clinical issues, an overview. Front Neurol 13:811686
Article PubMed PubMed Central Google Scholar
Schulz A, Kohlschütter A (2013) NCL disorders: frequent causes of childhood dementia. Iran J Child Neurol 7:1–8
PubMed PubMed Central Google Scholar
Zhu Y, Runwal G, Obrocki P, Rubinsztein DC (2019) Autophagy in childhood neurological disorders. Dev Med Child Neurol 61:639–645
Schulz A, Ajayi T, Specchio N, de Los RE, Gissen P, Ballon D et al (2018) Study of intraventricular cerliponase alfa for CLN2 disease. N Engl J Med 378:1898–1907
Article CAS PubMed Google Scholar
Doccini S, Morani F, Nesti C, Pezzini F, Calza G, Soliymani R et al (2020) Proteomic and functional analyses in disease models reveal CLN5 protein involvement in mitochondrial dysfunction. Cell Death Discov 6:18
Article CAS PubMed PubMed Central Google Scholar
Doccini S, Marchese M, Morani F, Gammaldi N, Mero S, Pezzini F et al (2022) Lysosomal proteomics links disturbances in lipid homeostasis and sphingolipid metabolism to CLN5 disease. Cells 11:1840
Article CAS PubMed PubMed Central Google Scholar
Kim WD, Wilson-Smillie MLDM, Thanabalasingam A, Lefrancois S, Cotman SL, Huber RJ (2022) Autophagy in the neuronal ceroid lipofuscinoses (Batten disease). Front Cell Dev Biol 10:812728
Article PubMed PubMed Central Google Scholar
Nelvagal HR, Lange J, Takahashi K, Tarczyluk-Wells MA, Cooper JD (2020) Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 1866:165570
Article CAS PubMed Google Scholar
Hamano T, Hayashi K, Shirafuji N, Nakamoto Y (2018) The implications of autophagy in Alzheimer’s disease. Curr Alzheimer Res 15:1283–1296
Article CAS PubMed Google Scholar
Kumar A, Dhawan A, Kadam A, Shinde A (2018) Autophagy and mitochondria: targets in neurodegenerative disorders. CNS Neurol Disord Drug Targets 17:696–705
Article CAS PubMed Google Scholar
Mariño G, López-Otín C (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci 61:1439–1454
Article PubMed PubMed Central Google Scholar
Moloudizargari M, Asghari MH, Ghobadi E, Fallah M, Rasouli S, Abdollahi M (2017) Autophagy, its mechanisms and regulation: implications in neurodegenerative diseases. Ageing Res Rev 40:64–74
Article CAS PubMed Google Scholar
Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ (2012) Mutation of the Parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis”. Hum Mol Genet 21:2646–2650
Article CAS PubMed PubMed Central Google Scholar
Canafoglia L, Morbin M, Scaioli V, Pareyson D, D’Incerti L, Fugnanesi V, Tagliavini F, Berkovic SF, Franceschetti S (2014) Recurrent generalized seizures, visual loss, and palinopsia as phenotypic features of neuronal ceroid lipofuscinosis due to progranulin gene mutation. Epilepsia 55:56–59
Geier EG, Bourdenx M, Storm NJ, Cochran JN, Sirkis DW, Hwang JH et al (2019) Rare variants in the neuronal ceroid lipofuscinosis gene MFSD8 are candidate risk factors for frontotemporal dementia. Acta Neuropathol 137:71–88
Article CAS PubMed Google Scholar
Qureshi YH, Patel VM, Berman DE, Kothiya MJ, Neufeld JL, Vardarajan B et al (2018) An Alzheimer’s disease-linked loss-of-function CLN5 variant impairs cathepsin D maturation, consistent with a retromer trafficking defect. Mol Cell Biol 38:e00011-18
Article CAS PubMed PubMed Central Google Scholar
Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M et al (2012) Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet 90:1102–1107
Article CAS PubMed PubMed Central Google Scholar
Sleat DE, Tannous A, Sohar I, Wiseman JA, Zheng H, Qian M et al (2017) Proteomic analysis of brain and cerebrospinal fluid from the three major forms of neuronal ceroid lipofuscinosis reveals potential biomarkers. J Proteome Res 16:3787–3804
Article CAS PubMed PubMed Central Google Scholar
Huber RJ (2021) Altered protein secretion in Batten disease. Dis Model Mech 14:dmm049152
Article CAS PubMed PubMed Central Google Scholar
Kline RA, Wishart TM, Mills K, Heywood WE (2020) Applying modern omic technologies to the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 1866:165498
Article CAS PubMed Google Scholar
Best HL, Clare AJ, McDonald KO, Wicky HE, Hughes SM (2021) An altered secretome is an early marker of the pathogenesis of CLN6 Batten disease. J Neurochem 157:764–780
Article CAS PubMed Google Scholar
Hersrud SL, Geraets RD, Weber KL, Chan CH, Pearce DA (2016) Plasma biomarkers for neuronal ceroid lipofuscinosis. FEBS J 283:459–471
Article CAS PubMed Google Scholar
Sleat DE, Wiseman JA, El-Banna M, Zheng H, Zhao C, Soherwardy A, Moore DF, Lobel P (2019) Analysis of brain and cerebrospinal fluid from mouse models of the three major forms of neuronal ceroid lipofuscinosis reveals changes in the lysosomal proteome. Mol Cell Proteomics 18:2244–2261
Article PubMed PubMed Central Google Scholar
Chen H, Chen F, Zhang M, Chen Y, Cui L, Liang C (2021) A review of APOE genotype-dependent autophagic flux regulation in Alzheimer’s disease. J Alzheimers Dis 84:535–555
Article CAS PubMed Google Scholar
Martens YA, Zhao N, Liu CC, Kanekiyo T, Yang AJ, Goate AM, Holtzman DM, Bu G (2022) ApoE cascade hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron 110:1304–1317
Article CAS PubMed PubMed Central Google Scholar
Williams T, Borchelt DR, Chakrabarty P (2020) Therapeutic approaches targeting Apolipoprotein E function in Alzheimer’s disease. Mol Neurodegener 15:8
Article CAS PubMed PubMed Central Google Scholar
Lyly A, Marjavaara SK, Kyttälä A, Uusi-Rauva K, Luiro K, Kopra O et al (2008) Deficiency of the INCL protein Ppt1 results in changes in ectopic F1-ATP synthase and altered cholesterol metabolism. Hum Mol Genet 17:1406–1417
Article CAS PubMed Google Scholar
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ (2019) Clusterin in Alzheimer’s disease: mechanisms, genetics, and lessons from other pathologies. Front Neurosci 13:164
Article PubMed PubMed Central Google Scholar
Satapathy S, Wilson MR (2021) The dual roles of clusterin in extracellular and intracellular proteostasis. Trends Biochem Sci 46:652–660
Article CAS PubMed Google Scholar
Rodríguez-Rivera C, Garcia MM, Molina-Álvarez M, González-Martín C, Goicoechea C (2021) Clusterin: always protecting. Synthesis, function and potential issues. Biomed Pharmacother 134:111
Di YQ, Han XL, Kang XL, Wang D, Chen CH, Wang JX, Zhao XF (2021) Autophagy triggers CTSD (cathepsin D) maturation and localization inside cells to promote apoptosis. Autophagy 17:1170–1192
Article CAS PubMed Google Scholar
Zhang Z, Liu Z, Chen J, Yi J, Cheng J, Dun W, Wei H (2018) Resveratrol induces autophagic apoptosis via the lysosomal cathepsin D pathway in human drug-resistant K562/ADM leukemia cells. Exp Ther Med 15:3012–3019
CAS PubMed PubMed Central Google Scholar
Letronne F, Laumet G, Ayral AM, Chapuis J, Demiautte F, Laga M et al (2016) ADAM30 downregulates APP-linked defects through cathepsin D activation in Alzheimer’s disease. EBioMedicine 9:278–292
Article PubMed PubMed Central Google Scholar
Kim JW, Jung SY, Kim Y, Heo H, Hong CH, Seo SW, Choi SH, Son SJ, Lee S, Chang J (2021) Identification of cathepsin d as a plasma biomarker for Alzheimer’s disease. Cells 10:138
Article CAS PubMed PubMed Central Google Scholar
Huber RJ (2017) Loss of Cln3 impacts protein secretion in the social amoeba Dictyostelium. Cell Signal 35:61–72
Article CAS PubMed Google Scholar
Huber RJ, Mathavarajah S (2019) Comparative transcriptomics reveals mechanisms underlying Cln3-deficiency phenotypes in Dictyostelium. Cell Signal 58:79–90
Comments (0)