Dem-Aging: autophagy-related pathologies and the “two faces of dementia”

Simonati A, Williams RE (2022) Neuronal ceroid lipofuscinosis: the multifaceted approach to the clinical issues, an overview. Front Neurol 13:811686

Article  PubMed  PubMed Central  Google Scholar 

Schulz A, Kohlschütter A (2013) NCL disorders: frequent causes of childhood dementia. Iran J Child Neurol 7:1–8

PubMed  PubMed Central  Google Scholar 

Zhu Y, Runwal G, Obrocki P, Rubinsztein DC (2019) Autophagy in childhood neurological disorders. Dev Med Child Neurol 61:639–645

Article  PubMed  Google Scholar 

Schulz A, Ajayi T, Specchio N, de Los RE, Gissen P, Ballon D et al (2018) Study of intraventricular cerliponase alfa for CLN2 disease. N Engl J Med 378:1898–1907

Article  CAS  PubMed  Google Scholar 

Doccini S, Morani F, Nesti C, Pezzini F, Calza G, Soliymani R et al (2020) Proteomic and functional analyses in disease models reveal CLN5 protein involvement in mitochondrial dysfunction. Cell Death Discov 6:18

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doccini S, Marchese M, Morani F, Gammaldi N, Mero S, Pezzini F et al (2022) Lysosomal proteomics links disturbances in lipid homeostasis and sphingolipid metabolism to CLN5 disease. Cells 11:1840

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim WD, Wilson-Smillie MLDM, Thanabalasingam A, Lefrancois S, Cotman SL, Huber RJ (2022) Autophagy in the neuronal ceroid lipofuscinoses (Batten disease). Front Cell Dev Biol 10:812728

Article  PubMed  PubMed Central  Google Scholar 

Nelvagal HR, Lange J, Takahashi K, Tarczyluk-Wells MA, Cooper JD (2020) Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 1866:165570

Article  CAS  PubMed  Google Scholar 

Hamano T, Hayashi K, Shirafuji N, Nakamoto Y (2018) The implications of autophagy in Alzheimer’s disease. Curr Alzheimer Res 15:1283–1296

Article  CAS  PubMed  Google Scholar 

Kumar A, Dhawan A, Kadam A, Shinde A (2018) Autophagy and mitochondria: targets in neurodegenerative disorders. CNS Neurol Disord Drug Targets 17:696–705

Article  CAS  PubMed  Google Scholar 

Mariño G, López-Otín C (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci 61:1439–1454

Article  PubMed  PubMed Central  Google Scholar 

Moloudizargari M, Asghari MH, Ghobadi E, Fallah M, Rasouli S, Abdollahi M (2017) Autophagy, its mechanisms and regulation: implications in neurodegenerative diseases. Ageing Res Rev 40:64–74

Article  CAS  PubMed  Google Scholar 

Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ (2012) Mutation of the Parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis”. Hum Mol Genet 21:2646–2650

Article  CAS  PubMed  PubMed Central  Google Scholar 

Canafoglia L, Morbin M, Scaioli V, Pareyson D, D’Incerti L, Fugnanesi V, Tagliavini F, Berkovic SF, Franceschetti S (2014) Recurrent generalized seizures, visual loss, and palinopsia as phenotypic features of neuronal ceroid lipofuscinosis due to progranulin gene mutation. Epilepsia 55:56–59

Article  Google Scholar 

Geier EG, Bourdenx M, Storm NJ, Cochran JN, Sirkis DW, Hwang JH et al (2019) Rare variants in the neuronal ceroid lipofuscinosis gene MFSD8 are candidate risk factors for frontotemporal dementia. Acta Neuropathol 137:71–88

Article  CAS  PubMed  Google Scholar 

Qureshi YH, Patel VM, Berman DE, Kothiya MJ, Neufeld JL, Vardarajan B et al (2018) An Alzheimer’s disease-linked loss-of-function CLN5 variant impairs cathepsin D maturation, consistent with a retromer trafficking defect. Mol Cell Biol 38:e00011-18

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M et al (2012) Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet 90:1102–1107

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sleat DE, Tannous A, Sohar I, Wiseman JA, Zheng H, Qian M et al (2017) Proteomic analysis of brain and cerebrospinal fluid from the three major forms of neuronal ceroid lipofuscinosis reveals potential biomarkers. J Proteome Res 16:3787–3804

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huber RJ (2021) Altered protein secretion in Batten disease. Dis Model Mech 14:dmm049152

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kline RA, Wishart TM, Mills K, Heywood WE (2020) Applying modern omic technologies to the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 1866:165498

Article  CAS  PubMed  Google Scholar 

Best HL, Clare AJ, McDonald KO, Wicky HE, Hughes SM (2021) An altered secretome is an early marker of the pathogenesis of CLN6 Batten disease. J Neurochem 157:764–780

Article  CAS  PubMed  Google Scholar 

Hersrud SL, Geraets RD, Weber KL, Chan CH, Pearce DA (2016) Plasma biomarkers for neuronal ceroid lipofuscinosis. FEBS J 283:459–471

Article  CAS  PubMed  Google Scholar 

Sleat DE, Wiseman JA, El-Banna M, Zheng H, Zhao C, Soherwardy A, Moore DF, Lobel P (2019) Analysis of brain and cerebrospinal fluid from mouse models of the three major forms of neuronal ceroid lipofuscinosis reveals changes in the lysosomal proteome. Mol Cell Proteomics 18:2244–2261

Article  PubMed  PubMed Central  Google Scholar 

Chen H, Chen F, Zhang M, Chen Y, Cui L, Liang C (2021) A review of APOE genotype-dependent autophagic flux regulation in Alzheimer’s disease. J Alzheimers Dis 84:535–555

Article  CAS  PubMed  Google Scholar 

Martens YA, Zhao N, Liu CC, Kanekiyo T, Yang AJ, Goate AM, Holtzman DM, Bu G (2022) ApoE cascade hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron 110:1304–1317

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams T, Borchelt DR, Chakrabarty P (2020) Therapeutic approaches targeting Apolipoprotein E function in Alzheimer’s disease. Mol Neurodegener 15:8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyly A, Marjavaara SK, Kyttälä A, Uusi-Rauva K, Luiro K, Kopra O et al (2008) Deficiency of the INCL protein Ppt1 results in changes in ectopic F1-ATP synthase and altered cholesterol metabolism. Hum Mol Genet 17:1406–1417

Article  CAS  PubMed  Google Scholar 

Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ (2019) Clusterin in Alzheimer’s disease: mechanisms, genetics, and lessons from other pathologies. Front Neurosci 13:164

Article  PubMed  PubMed Central  Google Scholar 

Satapathy S, Wilson MR (2021) The dual roles of clusterin in extracellular and intracellular proteostasis. Trends Biochem Sci 46:652–660

Article  CAS  PubMed  Google Scholar 

Rodríguez-Rivera C, Garcia MM, Molina-Álvarez M, González-Martín C, Goicoechea C (2021) Clusterin: always protecting. Synthesis, function and potential issues. Biomed Pharmacother 134:111

Article  Google Scholar 

Di YQ, Han XL, Kang XL, Wang D, Chen CH, Wang JX, Zhao XF (2021) Autophagy triggers CTSD (cathepsin D) maturation and localization inside cells to promote apoptosis. Autophagy 17:1170–1192

Article  CAS  PubMed  Google Scholar 

Zhang Z, Liu Z, Chen J, Yi J, Cheng J, Dun W, Wei H (2018) Resveratrol induces autophagic apoptosis via the lysosomal cathepsin D pathway in human drug-resistant K562/ADM leukemia cells. Exp Ther Med 15:3012–3019

CAS  PubMed  PubMed Central  Google Scholar 

Letronne F, Laumet G, Ayral AM, Chapuis J, Demiautte F, Laga M et al (2016) ADAM30 downregulates APP-linked defects through cathepsin D activation in Alzheimer’s disease. EBioMedicine 9:278–292

Article  PubMed  PubMed Central  Google Scholar 

Kim JW, Jung SY, Kim Y, Heo H, Hong CH, Seo SW, Choi SH, Son SJ, Lee S, Chang J (2021) Identification of cathepsin d as a plasma biomarker for Alzheimer’s disease. Cells 10:138

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huber RJ (2017) Loss of Cln3 impacts protein secretion in the social amoeba Dictyostelium. Cell Signal 35:61–72

Article  CAS  PubMed  Google Scholar 

Huber RJ, Mathavarajah S (2019) Comparative transcriptomics reveals mechanisms underlying Cln3-deficiency phenotypes in Dictyostelium. Cell Signal 58:79–90

Article 

Comments (0)

No login
gif