Adult-onset Alexander disease among patients of Jewish Syrian descent

Brenner M, Johnson AB, Boespflug-Tanguy O et al (2001) Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27:117–120. https://doi.org/10.1038/83679

Article  CAS  PubMed  Google Scholar 

Russo LS, Aron A, Anderson PJ (1976) Alexander’s disease: a report and reappraisal. Neurology 26:607–614. https://doi.org/10.1212/wnl.26.7.607

Article  PubMed  Google Scholar 

Pridmore CL, Baraitser M, Harding B et al (1993) Alexander’s disease: clues to diagnosis. J Child Neurol 8:134–144. https://doi.org/10.1177/088307389300800205

Article  CAS  PubMed  Google Scholar 

Springer S, Erlewein R, Naegele T et al (2000) Alexander disease–classification revisited and isolation of a neonatal form. Neuropediatrics 31:86–92. https://doi.org/10.1055/s-2000-7479

Article  CAS  PubMed  Google Scholar 

Prust M, Wang J, Morizono H et al (2011) GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology 77:1287–1294. https://doi.org/10.1212/WNL.0b013e3182309f72

Article  CAS  PubMed  PubMed Central  Google Scholar 

Srivastava S, Waldman A, Naidu S (1993) Alexander Disease. In: Adam MP, Everman DB, Mirzaa GM et al (eds) GeneReviews®. University of Washington, Seattle, Seattle (WA)

Barkovich AJ, Messing A (2006) Alexander disease: not just a leukodystrophy anymore. Neurology 66:468–469. https://doi.org/10.1212/01.wnl.0000200905.43191.4d

Article  PubMed  Google Scholar 

Caroli F, Biancheri R, Seri M et al (2007) GFAP mutations and polymorphisms in 13 unrelated Italian patients affected by Alexander disease. Clin Genet 72:427–433. https://doi.org/10.1111/j.1399-0004.2007.00869.x

Article  CAS  PubMed  Google Scholar 

Graff-Radford J, Schwartz K, Gavrilova RH et al (2014) Neuroimaging and clinical features in type II (late-onset) Alexander disease. Neurology 82:49–56. https://doi.org/10.1212/01.wnl.0000438230.33223.bc

Article  PubMed  PubMed Central  Google Scholar 

Farina L, Pareyson D, Minati L et al (2008) Can MR imaging diagnose adult-onset Alexander disease? AJNR Am J Neuroradiol 29:1190–1196. https://doi.org/10.3174/ajnr.A1060

Article  CAS  PubMed  PubMed Central  Google Scholar 

Messing A (2018) Alexander disease. In: Handbook of Clinical Neurology. Elsevier, pp 693–700. https://doi.org/10.1016/B978-0-444-64076-5.00044-2

Messing A, Brenner M, Feany MB et al (2012) Alexander disease. J Neurosci 32:5017–5023. https://doi.org/10.1523/JNEUROSCI.5384-11.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshida T, Sasaki M, Yoshida M et al (2011) Nationwide survey of Alexander disease in Japan and proposed new guidelines for diagnosis. J Neurol 258:1998–2008. https://doi.org/10.1007/s00415-011-6056-3

Article  PubMed  Google Scholar 

Nishri D, Edvardson S, Lev D et al (2014) Diagnosis by whole exome sequencing of atypical infantile onset Alexander disease masquerading as a mitochondrial disorder. Eur J Paediatr Neurol 18:495–501. https://doi.org/10.1016/j.ejpn.2014.03.009

Article  PubMed  Google Scholar 

Ciammola A, Sangalli D, Sassone J et al (2019) A novel mutation of GFAP causing adult-onset Alexander disease. Front Neurol 10:1124. https://doi.org/10.3389/fneur.2019.01124

Article  PubMed  PubMed Central  Google Scholar 

Hayashi Y, Nagasawa M, Asano T et al (2017) Central hypothermia associated with Alexander disease. A case report. Clin Neurol Neurosurg 157:31–33. https://doi.org/10.1016/j.clineuro.2017.03.013

Sreedharan J, Shaw CE, Jarosz J, Samuel M (2007) Alexander disease with hypothermia, microcoria, and psychiatric and endocrine disturbances. Neurology 68:1322–1323. https://doi.org/10.1212/01.wnl.0000259543.95222.9d

Kim B, Kim S, Jin MS (2018) Crystal structure of the human glial fibrillary acidic protein 1B domain. Biochem Biophys Res Commun 503:2899–2905. https://doi.org/10.1016/j.bbrc.2018.08.066

Flint D, Li R, Webster LS et al (2012) Splice site, frameshift, and chimeric GFAP mutations in Alexander disease. Hum Mutat 33:1141–1148. https://doi.org/10.1002/humu.22094

Hsiao VC, Tian R, Long H et al (2005) Alexander-disease mutation of GFAP causes filament disorganization and decreased solubility of GFAP. J Cell Sci 118:2057–2065. https://doi.org/10.1242/jcs.02339

Der Perng M, Su M, Wen SF et al (2006) The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27. Am J Hum Genet 79:197–213. https://doi.org/10.1086/504411

Gorospe JR, Naidu S, Johnson AB et al (2002) Molecular findings in symptomatic and pre-symptomatic Alexander disease patients. Neurology 58:1494–1500. https://doi.org/10.1212/wnl.58.10.1494

Article  CAS  PubMed  Google Scholar 

Li R, Johnson AB, Salomons G et al (2005) Glial fibrillary acidic protein mutations in infantile, juvenile, and adult forms of Alexander disease. Ann Neurol 57:310–326. https://doi.org/10.1002/ana.20406

Article  CAS  PubMed  Google Scholar 

Balbi P, Salvini S, Fundarò C, et al (2010) The clinical spectrum of late-onset Alexander disease: a systematic literature review. J Neurol 257:1955–1962. https://doi.org/10.1007/s00415-010-5706-1

Article  PubMed  Google Scholar 

Brenner M (2014) Alexander’s Disease. In: Aminoff MJ, Daroff RB (eds) Encyclopedia of the Neurological Sciences, 2nd Edn. Academic Press, Oxford, pp 106–109

Article  CAS  PubMed  Google Scholar 

Stumpf E, Masson H, Duquette A et al (2003) Adult Alexander disease with autosomal dominant transmission: a distinct entity caused by mutation in the glial fibrillary acid protein gene. Arch Neurol 60:1307–1312. https://doi.org/10.1001/archneur.60.9.1307

Yoshida T, Mizuta I, Saito K et al (2013) Effects of a polymorphism in the GFAP promoter on the age of onset and ambulatory disability in late-onset Alexander disease. J Hum Genet 58:635–638. https://doi.org/10.1038/jhg.2013.83

Hagemann TL, Powers B, Mazur C, et al (2018) Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease: GFAP ASO Therapy in AxD. Ann Neurol 83:27–39. https://doi.org/10.1002/ana.25118

Hagemann TL, Powers B, Lin N-H et al (2021) Antisense therapy in a rat model of Alexander disease reverses GFAP pathology, white matter deficits, and motor impairment. Sci Transl Med 13:eabg4711. https://doi.org/10.1126/scitranslmed.abg4711

留言 (0)

沒有登入
gif