Confounding Effects on the Performance of Machine Learning Analysis of Static Functional Connectivity Computed from rs-fMRI Multi-site Data

Abraham, A., Milham, M. P., Di Martino, A., et al. (2017). Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. NeuroImage, 147, 736–745.

Article  PubMed  Google Scholar 

Aertsen, A., Gerstein, G., Habib, M., et al. (1989). Dynamics of neuronal firing correlation: modulation of “effective connectivity’’. Journal of neurophysiology, 61(5), 900–917.

Article  CAS  PubMed  Google Scholar 

Almuqhim, F., & Saeed, F. (2021). ASD-SAENET: a sparse autoencoder, and deep-neural network model for detecting autism spectrum disorder (ASD) using fMRI data. Frontiers in Computational Neuroscience, 15, 27.

Article  Google Scholar 

An, H. S., Moon, W. J., Ryu, J. K., et al. (2017). Inter-vender and test-retest reliabilities of resting-state functional magnetic resonance imaging: Implications for multi-center imaging studies. Magnetic resonance imaging, 44, 125–130.

Article  PubMed  Google Scholar 

Arslan, S., Ktena, S. I., Makropoulos, A., et al. (2018). Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex. NeuroImage, 170, 5–30. https://doi.org/10.1016/j.neuroimage.2017.04.014. https://www.sciencedirect.com/science/article/pii/S1053811917303026, segmenting the Brain.

Badhwar, A., Collin-Verreault, Y., Orban, P., et al. (2020). Multivariate consistency of resting-state fMRI connectivity maps acquired on a single individual over 2.5 years, 13 sites and 3 vendors. NeuroImage, 205, 116210.

Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353–364. https://doi.org/10.1038/nn.4502. https://doi.org/10.1038/nn.4502

Benkarim, O., Paquola, C., Park, B., et al. (2022). Population heterogeneity in clinical cohorts affects the predictive accuracy of brain imaging. PLoS Biology, 20(4), e3001627.

Birn, R. M., Molloy, E. K., Patriat, R., et al. (2013). The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage, 83, 550–558.

Article  PubMed  Google Scholar 

Biswal, B. B., Mennes, M., Zuo, X. N., et al. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107(10), 4734–4739.

Article  CAS  Google Scholar 

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., et al. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic resonance in medicine, 34(4), 537–541.

Article  CAS  PubMed  Google Scholar 

Brown, G. G., Mathalon, D. H., Stern, H., et al. (2011). Multisite reliability of cognitive bold data. Neuroimage, 54(3), 2163–2175.

Article  PubMed  Google Scholar 

Bullmore, E. T., & Bassett, D. S. (2011). Brain graphs: graphical models of the human brain connectome. Annual Review of Clinical Psychology, 7(1), 113–140. https://doi.org/10.1146/annurev-clinpsy-040510-143934. pMID: 21128784. https://arxiv.org/abs/https://doi.org/10.1146/annurev-clinpsy-040510-143934

Chavez, S., Viviano, J., Zamyadi, M., et al. (2018). A novel DTI-QA tool: automated metric extraction exploiting the sphericity of an agar filled phantom. Magnetic resonance imaging, 46, 28–39.

Article  PubMed  Google Scholar 

Chen, C. P., Keown, C. L., Jahedi, A., et al. (2015). Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in Autism. NeuroImage: Clinical, 8, 238–245.

Chen, C. P., Keown, C. L., & Müller, R. A. (2013). Towards understanding autism risk factors: a classification of brain images with support vector machines. International Journal of Semantic Computing, 7(2), 205.

Article  Google Scholar 

Chen, J., Liu, J., Calhoun, V. D., et al. (2014). Exploration of scanning effects in multi-site structural MRI studies. Journal of neuroscience methods, 230, 37–50.

Article  PubMed  PubMed Central  Google Scholar 

Chen, A. A., Srinivasan, D., Pomponio, R., et al. (2022). Harmonizing functional connectivity reduces scanner effects in community detection. NeuroImage, 256, 119198.

Article  PubMed  Google Scholar 

Combrisson, E., & Jerbi, K. (2015). Exceeding chance level by chance: the caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. Journal of neuroscience methods, 250, 126–136.

Article  PubMed  Google Scholar 

Corder, G. W., & Foreman, D. I. (2014). Nonparametric statistics: a step-by-step approach. Hoboken, New Jersey: John Wiley and Sons.

Google Scholar 

Cox, R. W., & Jesmanowicz, A. (1999). Real-time 3D image registration for functional MRI. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 42(6), 1014–1018.

Article  CAS  Google Scholar 

Craddock, C., Benhajali, Y., Chu, C., et al. (2013). The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics, 7, 3.

Google Scholar 

Craddock, R. C., James, G. A., Holtzheimer, P. E., III., et al. (2012). A whole brain fMRI atlas generated via spatially constrained spectral clustering. Human brain mapping, 33(8), 1914–1928.

Article  PubMed  Google Scholar 

Dansereau, C., Benhajali, Y., Risterucci, C., et al. (2017). Statistical power and prediction accuracy in multisite resting-state fMRI connectivity. Neuroimage, 149, 220–232.

Article  PubMed  Google Scholar 

Di Martino, A., O’connor, D., Chen, B., et al. (2017). Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific data, 4(1), 1–15.

Article  Google Scholar 

Di Martino, A., Yan, C. G., Li, Q., et al. (2014). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular psychiatry, 19(6), 659–667.

Article  PubMed  Google Scholar 

Dukart, J., Schroeter, M. L., Mueller, K., et al. (2011). Age correction in dementia-matching to a healthy brain. PloS one, 6(7), e22193.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eslami, T., Mirjalili, V., Fong, A., et al. (2019). ASD-diagnet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data. Frontiers in Neuroinformatics, 13, 70. https://doi.org/10.3389/fninf.2019.00070. https://www.frontiersin.org/article/10.3389/fninf.2019.00070

Faskowitz, J., Betzel, R. F., & Sporns, O. (2022). Edges in brain networks: Contributions to models of structure and function. Network Neuroscience, 6(1), 1–28.

PubMed  PubMed Central  Google Scholar 

Faskowitz, J., Esfahlani, F. Z., Jo, Y., et al. (2020). Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture. Nature Neuroscience, 23(12), 1644–1654. https://doi.org/10.1038/s41593-020-00719-y

Article  CAS  PubMed  Google Scholar 

Feis, R. A., Smith, S. M., Filippini, N., et al. (2015). ICA-based artifact removal diminishes scan site differences in multi-center resting-state fMRI. Frontiers in neuroscience, 9, 395.

Article  PubMed  PubMed Central  Google Scholar 

Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10(4), 507–521.

Google Scholar 

Forsyth, J. K., McEwen, S. C., Gee, D. G., et al. (2014). Reliability of functional magnetic resonance imaging activation during working memory in a multi-site study: analysis from the North American Prodrome longitudinal study. Neuroimage, 97, 41–52.

Article  PubMed  Google Scholar 

Fortin, J. P., Cullen, N., Sheline, Y. I., et al. (2018). Harmonization of cortical thickness measurements across scanners and sites. Neuroimage, 167, 104–120.

Article  PubMed  Google Scholar 

Fortin, J. P., Parker, D., Tunç, B., et al. (2017). Harmonization of multi-site diffusion tensor imaging data. Neuroimage, 161, 149–170.

Article  PubMed  Google Scholar 

Friedman, L., Glover, G. H., Consortium, F., et al. (2006). Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. Neuroimage, 33(2), 471–481.

Friedman, L., Stern, H., Brown, G. G., et al. (2008). Test-retest and between-site reliability in a multicenter fMRI study. Human brain mapping, 29(8), 958–972.

Article  PubMed  Google Scholar 

Glover, G. H., Mueller, B. A., Turner, J. A., et al. (2012). Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies. Journal of Magnetic Resonance Imaging, 36(1), 39–54.

Article  PubMed  PubMed Central  Google Scholar 

Gountouna, V. E., Job, D. E., McIntosh, A. M., et al. (2010). Functional magnetic resonance imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task. Neuroimage, 49(1), 552–560.

Article  PubMed  Google Scholar 

Gradin, V., Gountouna, V. E., Waiter, G., et al. (2010). Between-and within-scanner variability in the calibrain study n-back cognitive task. Psychiatry Research: Neuroimaging, 184(2), 86–95.

Article  Google Scholar 

Guo, X., Dominick, K. C., Minai, A. A., et al. (2017). Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Frontiers in neuroscience, 11, 460.

Article  PubMed  PubMed Central  Google Scholar 

Heinsfeld, A. S., Franco, A. R., Craddock, R. C., et al. (2018). Identification of autism spectrum disorder using deep learning and the abide dataset. NeuroImage: Clinical, 17, 16–23.

Article  PubMed  Google Scholar 

Iidaka, T. (2015). Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex, 63, 55–67.

Article  PubMed  Google Scholar 

Jenkinson, M., & Chappell, M. (2018). Introduction to neuroimaging analysis. Oxford University Press.

Google Scholar 

Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics, 8(1), 118–127.

Article  PubMed  Google Scholar 

Kam, T. E., Suk, H. I., & Lee, S. W. (2017). Multiple functional networks modeling for autism spectrum disorder diagnosis. Human brain mapping, 38(11), 5804–5821.

Article  PubMed  PubMed Central  Google Scholar 

Kassraian-Fard, P., Matthis, C., Balsters, J. H., et al. (2016). Promises, pitfalls, and basic guidelines for applying machine learning classifiers to psychiatric imaging data, with autism as an example. Frontiers in psychiatry, 7, 177.

Article  PubMed  PubMed Central  Google Scholar 

Khosla, M., Jamison, K., Kuceyeski, A., et al. (2019). Ensemble learning with 3D convolutional neural netw

Comments (0)

No login
gif