Idiopathic Pulmonary Fibrosis: 8 Years On After Nintedanib and Pirfenidone Approval—What Is on the Horizon?

Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Antoniou KM, Bissell BD, et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2022;205:E18-47. https://doi.org/10.1164/rccm.202202-0399ST.

Article  PubMed  PubMed Central  Google Scholar 

Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198:e44-68. https://doi.org/10.1164/rccm.201807-1255ST.

Article  PubMed  Google Scholar 

Lynch DA, Sverzellati N, Travis WD, Brown KK, Colby TV, Galvin JR, et al. Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper. Lancet Respir Med. 2018;6:138–53. https://doi.org/10.1016/S2213-2600(17)30433-2.

Article  PubMed  Google Scholar 

Strunz M, Simon LM, Ansari M, Kathiriya JJ, Angelidis I, Mayr CH, et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat Commun. 2020;11:3559. https://doi.org/10.1038/s41467-020-17358-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Selman M, Pardo A. The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cell Signal. 2020;66:109482. https://doi.org/10.1016/j.cellsig.2019.109482.

Sheng G, Chen P, Wei Y, Yue H, Chu J, Zhao J, et al. Viral infection increases the risk of idiopathic pulmonary fibrosis: a meta-analysis. Chest. 2020;157:1175–87. https://doi.org/10.1016/j.chest.2019.10.032.

Pardo A, Selman M. The interplay of the genetic architecture, aging, and environmental factors in the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2021;64:163–72. https://doi.org/10.1165/rcmb.2020-0373PS.

Article  CAS  PubMed  Google Scholar 

Bédard Méthot D, Leblanc É, Lacasse Y. Meta-analysis of gastroesophageal reflux disease and idiopathic pulmonary fibrosis. Chest. 2019;155:33–43. https://doi.org/10.1016/j.chest.2018.07.038.

Article  PubMed  Google Scholar 

Baumgartner KB, Samet JM, Stidley CA, Colby TV, Waldron JA. Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1997;155:242–8. https://doi.org/10.1164/ajrccm.155.1.9001319.

Article  CAS  PubMed  Google Scholar 

Stock CJW, Renzoni EA. Telomeres in interstitial lung disease. J Clin Med. 2021;7:1384. https://doi.org/10.3390/jcm10071384.

Wu X, Li W, Luo Z, Chen Y. The minor T allele of the MUC5B promoter rs35705950 associated with susceptibility to idiopathic pulmonary fibrosis: a meta-analysis. Sci Rep. 2021;11:1–18. https://doi.org/10.1038/s41598-021-03533-z.

Article  CAS  Google Scholar 

Spagnolo P, Tonelli R, Samarelli AV, Castelli G, Cocconcelli E, Petrarulo S, et al. The role of immune response in the pathogenesis of idiopathic pulmonary fibrosis: far beyond the Th1/Th2 imbalance. Expert Opin Ther Targets. 2022;26:617–31. https://doi.org/10.1080/14728222.2022.2114897.

Article  CAS  PubMed  Google Scholar 

Tirelli C, Pesenti C, Miozzo M, Mondoni M, Fontana L, Centanni S. The genetic and epigenetic footprint in idiopathic pulmonary fibrosis and familial pulmonary fibrosis: a state-of-the-art review. Diagnostics. 2022;12:3107. https://doi.org/10.3390/diagnostics12123107.

Cronkhite JT, Xing C, Raghu G, Chin KM, Torres F, Rosenblatt RL, et al. Telomere shortening in familial and sporadic pulmonary fibrosis. Am J Respir Crit Care Med. 2008;178:729–37. https://doi.org/10.1164/rccm.200804-550OC.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spagnolo P, Semenzato U. Revealing the pathogenic and ageing-related mechanisms of the enigmatic idiopathic pulmonary fibrosis (and chronic obstructive pulmonary disease). Curr Opin Pulm Med. 2022;28:296–302. https://doi.org/10.1097/MCP.0000000000000876.

Article  CAS  PubMed  Google Scholar 

Minagawa S, Araya J, Numata T, Nojiri S, Hara H, Yumino Y, et al. Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-β-induced senescence of human bronchial epithelial cells. Am J Physiol - Lung Cell Mol Physiol. 2011;300:391–401. https://doi.org/10.1152/ajplung.00097.2010.

Article  CAS  Google Scholar 

ATS Board Of Directors, ERS Executive Committee. Idiopathic pulmonary fibrosis: diagnosis and treatment international consensus statement. Am J Respir Crit Care Med. 2000;161:646–64. https://doi.org/10.1164/ajrccm.161.2.ats3-00.

Idiopathic Pulmonary Fibrosis Clinical Research Network, Raghu G, Anstrom KJ, King TE, Lasky JA, Martinez FJ. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med. 2012;366:1968–77. https://doi.org/10.1056/NEJMoa1113354.

Raghu G, Rochwerg B, Zhang Y, Garcia CAC, Azuma A, Behr J, et al. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis: an update of the 2011 clinical practice guideline. Am J Respir Crit Care Med. 2015;192:e3-19. https://doi.org/10.1164/rccm.201506-1063ST.

Article  PubMed  Google Scholar 

Oku H, Nakazato H, Horikawa T, Tsuruta Y, Suzuki R. Pirfenidone suppresses tumor necrosis factor-α, enhances interleukin-10 and protects mice from endotoxic shock. Eur J Pharmacol. 2002;446:167–76. https://doi.org/10.1016/s0014-2999(02)01757-0.

Article  CAS  PubMed  Google Scholar 

Nakazato H, Oku H, Yamane S, Tsuruta Y, Suzuki R. A novel anti-fibrotic agent pirfenidone suppresses tumor necrosis factor-α at the translational level. Eur J Pharmacol. 2002;446:177–85. https://doi.org/10.1016/s0014-2999(02)01758-2.

Article  CAS  PubMed  Google Scholar 

Iyer SN, Margolin SB, Hyde DM, Giri SN. Lung fibrosis is ameliorated by pirfenidone fed in diet after the second dose in a three-dose bleomycin-hamster model. Exp Lung Res. 1998;24:119–33. https://doi.org/10.3109/01902149809046058.

Article  CAS  PubMed  Google Scholar 

Wollin L, Maillet I, Quesniaux V, Holweg A, Ryffel B. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J Pharmacol Exp Ther. 2014;349:209–20. https://doi.org/10.1124/jpet.113.208223.

Article  CAS  PubMed  Google Scholar 

Hostettler KE, Zhong J, Papakonstantinou E, Karakiulakis G, Tamm M, Seidel P, et al. Anti-fibrotic effects of nintedanib in lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. Respir Res. 2014;15:157. https://doi.org/10.7326/0003-4819-134-2-200101160-00015.

Article  PubMed  PubMed Central  Google Scholar 

Roth GJ, Binder R, Colbatzky F, Dallinger C, Schlenker-Herceg R, Hilberg F, et al. Nintedanib: from discovery to the clinic. J Med Chem. 2015;58:1053–63. https://doi.org/10.1021/jm501562a.

Article  CAS  PubMed  Google Scholar 

King TE, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2083–92. https://doi.org/10.1056/NEJMoa1402582.

Article  CAS  PubMed  Google Scholar 

Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2071–82. https://doi.org/10.1056/NEJMoa1402584.

Cameli P, Alonzi V, d’Alessandro M, Bergantini L, Pordon E, Guerrieri M, et al. The effectiveness of nintedanib in patients with idiopathic pulmonary fibrosis, familial pulmonary fibrosis and progressive fibrosing interstitial lung diseases: a real-world study. Biomedicines. 2022;8:1973. https://doi.org/10.3390/biomedicines10081973.

Antoniou K, Markopoulou K, Tzouvelekis A, Trachalaki A, Vasarmidi E, Organtzis J, et al. Efficacy and safety of nintedanib in a greek multicentre idiopathic pulmonary fibrosis registry: a retrospective, observational, cohort study. ERJ Open Res. 2020;27;6(1):00172–2019. https://doi.org/10.1183/23120541.00172-2019.

Vietri L, Cameli P, Perruzza M, Cekorja B, Bergantini L, d’Alessandro M, et al. Pirfenidone in idiopathic pulmonary fibrosis: real-life experience in the referral centre of Siena. Ther Adv Respir Dis. 2020;14:1–8. https://doi.org/10.1177/1753466620906326.

Article  CAS  Google Scholar 

Lancaster L, Crestani B, Hernandez P, Inoue Y, Wachtlin D, Loaiza L, et al. Safety and survival data in patients with idiopathic pulmonary fibrosis treated with nintedanib: pooled data from six clinical trials. BMJ Open Respir Res. 2019;6:1–7. https://doi.org/10.1136/bmjresp-2018-000397.

Article  Google Scholar 

Nathan SD, Albera C, Bradford WZ, Costabel U, Glaspole I, Glassberg MK, et al. Effect of pirfenidone on mortality: pooled analyses and meta-analyses of clinical trials in idiopathic pulmonary fibrosis. Lancet Respir Med. 2017;5(1):33–41. https://doi.org/10.1016/S2213-2600(16)30326-5.

Article  CAS  PubMed  Google Scholar 

Zurkova M, Kriegova E, Kolek V, Lostakova V, Sterclova M, Bartos V, et al. Effect of pirfenidone on lung function decline and survival: 5-yr experience from a real-life IPF cohort from the Czech EMPIRE registry. Respir Res. 2019;20:1–11.

Article  Google Scholar 

Margaritopoulos GA, Trachalaki A, Wells AU, Vasarmidi E, Bibaki E, Papastratigakis G, et al. Pirfenidone improves survival in IPF: results from a real-life study. BMC Pulm Med. 2018;18:1–7. https://doi.org/10.1186/s12890-018-0736-z.

Article  CAS  Google Scholar 

Lancaster LH, de Andrade JA, Zibrak JD, Padilla ML, Albera C, Nathan SD, et al. Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis. Eur Respir Rev 2017;146:170057. https://doi.org/10.1183/16000617.0057-2017.

Tzouvelekis A, Karampitsakos T, Kontou M, Granitsas A, Malliou I, Anagnostopoulos A, et al. Safety and efficacy of nintedanib in idiopathic pulmonary fibrosis: a real-life observational study in Greece. Pulm Pharmacol Ther. 2018;49:61–6. https://doi.org/10.1016/j.pupt.2018.01.006.

Article  CAS  PubMed  Google Scholar 

Dobashi M, Tanaka H, Taima K, Itoga M, Ishioka Y, Shiratori T, et al. The efficacy of nintedanib in 158 patients with idiopathic pulmonary fibrosis in real-world settings: a multicenter retrospective study. SAGE Open Med. 2021;9:205031212110233. https://doi.org/10.1177/20503121211023357.

Article  Google Scholar 

Bando M, Yamauchi H, Ogura T, Taniguchi H, Watanabe K, Azuma A, et al. Clinical experience of the long-term use of pirfenidone for idiopathic pulmonary fibrosis. Intern Med. 2016;55:443–8. https://doi.org/10.2169/internalmedicine.55.5272.

Article  CAS  PubMed  Google Scholar 

• Herrmann FE, Hesslinger C, Wollin L, Nickolaus P. BI 1015550 is a PDE4B inhibitor and a clinical drug candidate for the oral treatment of idiopathic pulmonary fibrosis. Front Pharmacol. 2022;13:1–17. https://doi.org/10.3389/fphar.2022.838449. In this paper, the preclinical effects of BI1015550 in vitro and in vivo are presented; they provide the rationale for its use as antifibrotic agent in IPF patients.

Article  CAS  Google Scholar 

Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, De Alexandre RB, et al. Clinical and molecular genetics of the phosphodiesterases (pdes). Endocr Rev. 2014;35:195–233. https://doi.org/10.1210/er.2013-1053.

Article  CAS  PubMed  Google Scholar 

Li H, Zuo J, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol. 2018;9:1–21. https://doi.org/10.3389/fphar.2018.01048.

Article  CAS  Google Scholar 

Kolb M, Crestani B, Maher TM. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis. Eur Respir Rev. 2023;167:220206. https://doi.org/10.1183/16000617.0206-2022.

Takahashi N, Tetsuka T, Uranishi H, Okamoto T. Inhibition of the NF-κB transcriptional activity by protein kinase A. Eur J Biochem. 2002;269:4559–65. https://doi.org/10.1046/j.1432-1033.2002.03157.x.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif