A self-contained introduction to the statistical mechanics of ideal gases and chemical equilibrium

McQuarrie DA (1978) Statistical mechanics. Harper and Row, New York

Google Scholar 

Hill TL (1986) An introduction to statistical thermodynamics. Dover Publications, New York

Google Scholar 

Ben-Naim A (2008) A farewell to entropy: statistical thermodynamics based on information. World Scientific Publishing, Singapore

Book  Google Scholar 

Chandler D (1987) Introduction to modern statistical mechanics. Oxford University Press, New York

Google Scholar 

Gibbs JW (1902) Elementary principles in statistical mechanics. Dover Publications, New York

Google Scholar 

Hill TL (1956) Statistical mechanics: principles and selected applications. Dover Publications, New York

Google Scholar 

Kuzemsky AL (2014) Thermodynamic limit in statistical physics. Int J Mod Phys B 28:9. https://doi.org/10.1142/S0217979214300047

Article  Google Scholar 

Reif F (1965) Fundamentals of statistical and thermal physics. Waveland Press, Illinois

Google Scholar 

Girifalco LA (2000) Statistical mechanics solids. Oxford University Press, New York

Google Scholar 

Styer DF (2004) What good is the thermodynamic limit? Am J Phys 2004:72. https://doi.org/10.1119/1.1621028

Article  Google Scholar 

Gurarie V (2007) The equivalence between the canonical and microcanonical ensembles when applied to large systems. Am J Phys 75(9):1. https://doi.org/10.1119/1.2739571

Article  Google Scholar 

Allen MP, Tildesley DJ (2017) Computer simulation of liquids, 2nd edn. Oxford University Press, New York

Book  Google Scholar 

Knox JH (1980) Molecular thermodynamics: an introduction to statistical mechanics for chemists. Wiley, Chichester

Google Scholar 

Andrews FC (1975) Equilibrium statistical mechanics, 2nd edn. Wiley, New York

Google Scholar 

Denbigh K (1997) The principles of chemical equilibrium, 4th edn. Cambridge University Press, New York

Google Scholar 

Nash LK (1974) Elements of statistical thermodynamics, 2nd edn. Dover Publications, New York

Google Scholar 

Fernández-Peralta A, Toral R (2016) Ensemble equivalence for distinguishable particle. Entropy 2016:18. https://doi.org/10.3390/e18070259

Article  Google Scholar 

Levine IN (2009) Physical chemistry, 6th edn. McGraw-Hill, New York

Google Scholar 

Berry RS, Rice SA, Ross J (1980) Physical chemistry. Wiley, New York

Google Scholar 

Fowler WA, Engelbrecht CA, Woosley SE (1978) Nuclear partition functions. ApJ 226:3. https://doi.org/10.1086/156679

Article  Google Scholar 

Gomez-Jeria J (1983) On some problems in quantum pharmacology i. The partition functions. Int J Quant Chem 1983:23. https://doi.org/10.1002/qua.560230610

Article  Google Scholar 

Gilson MK, Irikura KK (2010) Symmetry numbers for rigid, flexible, and fluxional molecules: theory and applications. J Phys Chem B 114:49. https://doi.org/10.1021/jp110434s

Article  CAS  Google Scholar 

Kayser R, Kilpatrick JE (1978) Rotational partition function of the symmetric top. J Chem Phys 1978:68. https://doi.org/10.1063/1.435974

Article  Google Scholar 

Hynne F, Andersen K (1979) Concise derivation of the rotational partition function. Am J Phys 1979:47. https://doi.org/10.1119/1.11951

Article  Google Scholar 

McDowell RS (1987) Rotational partition functions for spherical-top molecules. J Quant Spectrosc Radiat Transfer 1987:38. https://doi.org/10.1016/0022-4073(87)90028-8

Article  Google Scholar 

McDowell RS (1988) Rotational partition functions for linear molecules. J Chem Phys 88:361. https://doi.org/10.1063/1.454608

Article  Google Scholar 

McQuarrie DA (1997) Physical chemistry: a molecular approach. University Science Books, Virginia

Google Scholar 

Jeschke G (2015) Advanced physical chemistry. Statistical thermodynamics, Gunnar Jeschke

Pauling L, Bright Wilson EJ (1935) Introduction to quantum mechanics: with applications to chemistry. McGraw-Hill Book Company, New York

Google Scholar 

Ling CY, Izgorodina EI, Coote M (2008) How accurate are approximate methods for evaluating partition functions for hindered internal rotations? J Phys Chem A 112:9. https://doi.org/10.1021/jp710341h

Article  CAS  Google Scholar 

Strekalov ML (2009) Energy levels and partition functions of internal rotation: analytical approximations. Chem Phys 362:1–2. https://doi.org/10.1016/j.chemphys.2009.06.011

Article  CAS  Google Scholar 

Widom B (2002) Statistical mechanics. A concise introduction for chemists. Cambridge University Press, New York

Book  Google Scholar 

Sandler SI (1990) From molecular theory to thermodynamic models. Part i. Pure fluids. Chem Eng Ed 1990:24

Google Scholar 

Sandler SI (1990) From molecular theory to thermodynamic models. Part ii. Mixtures. Chem Eng Ed 1990:24

Google Scholar 

DeVoe H (2020) Thermodynamics and chemistry, 2nd edn. Howard DeVoe, Maryland

Google Scholar 

Tolman RC (1918) A general theory of energy partition with applications to quantum theory. Phys Rev 11:261. https://doi.org/10.1103/PhysRev.11.261

Article  CAS  Google Scholar 

Lima J, Plastino A (2000) On the classical energy equipartition theorem. Braz J Phys 30:176–180. https://doi.org/10.1590/S0103-97332000000100019

Article  Google Scholar 

Łuczka J (2020) Quantum counterpart of classical equipartition of energy. J Stat Phys 179:839. https://doi.org/10.1007/s10955-020-02557-5

Article  Google Scholar 

Paños FJ, Pérez E (2015) Sackur-tetrode equation in the lab. Eur J Phys 36:00503. https://doi.org/10.1088/0143-0807/36/5/055033

Article  Google Scholar 

Nagata S (2018) An alternative expression to the Sackur-Tetrode entropy formula for a classical ideal gas. Chem Phys 504:8–12. https://doi.org/10.1016/j.chemphys.2018.02.001

Article  CAS  Google Scholar 

Haynes W (ed) (2017) CRC handbook of chemistry and physics, 97th edn. CRC Press, New York

Google Scholar 

Katiyar RS, Jha PK (2018) Molecular simulations in drug delivery: opportunities and challenges. Front Mol Biosci 8:4. https://doi.org/10.1002/wcms.1358

Article  CAS  Google Scholar 

Lemkul JA, Bevan DR (2012) The role of molecular simulations in the development of inhibitors of amyloid \(\beta\)-peptide aggregation for the treatment of Alzheimer’s disease. ACS Chem Neurosci 3:11. https://doi.org/10.1021/cn300091a

Article  CAS  Google Scholar 

Nabi F, Ahmad O, Khan YA et al. (2021) Computational studies on phylogeny and drug designing using molecular simulations for COVID-19. J Biomol 40:10753–10762. https://doi.org/10.1080/07391102.2021.1947895

Article  CAS  Google Scholar 

Coskuner-Weber O, Uversky VN (2018) Insights into the molecular mechanisms of Alzheimer’s and Parkinson’s diseases with molecular simulations: understanding the roles of artificial and pathological missense mutations in intrinsically disordered proteins related to pathology. Int J Mol Sci 2018:19. https://doi.org/10.3390/ijms19020336

Article  CAS  Google Scholar 

Gubbins KE, Quirke N (eds) (1996) Molecular simulation and industrial applications, methods, examples and prospects. Gordon and Breach Science Publishers, Amsterdam

Google Scholar 

Nezbeda I, Škvára J (2020) On industrial applications of molecular simulations. Mol Simul 47:846–856. https://doi.org/10.1080/08927022.2020.1828584

Article  CAS  Google Scholar 

de Klerk NJ, van der Maas E, Wagemaker M (2018) Analysis of diffusion in solid-state electrolytes through MD simulations, improvement of the Li-ion conductivity in \(\beta\)-Li\(_3\)PS\(_4\) as an example. ACS Appl Energy Mater 1:3230. https://doi.org/10.1021/acsaem.8b00457

Article  CAS  PubMed  PubMed Central  Google Scholar 

Natalia Ostrowska MF, Trylska J (2019) Modeling crowded environment in molecular simulations. Front Mol Biosci 6:86. https://doi.org/10.3389/fmolb.2019.00086

Article  CAS  PubMed  PubMed Central  Google Scholar 

Binder K (ed) (1995) Monte Carlo and molecular dynamics simulations in polymer science. Osford University Press, New York

Google Scholar 

Scheraga HA, Khalili M, Liwo A (2007) Protein-folding dynamics: overview of molecular simulation techniques. Annu Rev Phys Chem 58:57–83. https://doi.org/10.1146/annurev.physchem.58.032806.104614

Article  CAS  PubMed  Google Scholar 

Maginn E (2009) Molecular simulation of ionic liquids: current status and future opportunities. J Phys: Condens Matter 21:373101. https://doi.org/10.1088/0953-8984/21/37/373101

Article  CAS  PubMed  Google Scholar 

Klähn M, Seduraman A (2015) What determines CO\(_2\) solubility in ionic liquids? a molecular simulation study. J Phys Chem B 2015:119. https://doi.org/10.1021/acs.jpcb.5b03674

Article  CAS  Google Scholar 

Benjamin I (1997) Molecular structure and dynamics at liquid-liquid interfaces. Annu Rev Phys Chem 1997:48. https://doi.org/10.1146/annurev.physchem.48.1.407

Article  Google Scholar 

Scalfi L, Salanne M, Rotenberg B (2021) Molecular simulation of electrode-solution interfaces. Annu Rev Phys Chem 72:189. https://doi.org/10.1146/annurev-physchem-090519-024042

Article  CAS  PubMed  Google Scholar 

Ungerer P, Nieto-Draghi C, Rousseau B et al. (2007) Molecular simulation of the thermophysical properties of fluids: from understanding toward quantitative predictions. J Mol Liq 134:71–89. https://doi.org/10.1016/j.molliq.2006.12.019

Article  CAS  Google Scholar 

Tuckerman ME (2010) Statistical mechanics: theory and molecular simulation. Oxford University Press, New York

Google Scholar 

留言 (0)

沒有登入
gif