McQuarrie DA (1978) Statistical mechanics. Harper and Row, New York
Hill TL (1986) An introduction to statistical thermodynamics. Dover Publications, New York
Ben-Naim A (2008) A farewell to entropy: statistical thermodynamics based on information. World Scientific Publishing, Singapore
Chandler D (1987) Introduction to modern statistical mechanics. Oxford University Press, New York
Gibbs JW (1902) Elementary principles in statistical mechanics. Dover Publications, New York
Hill TL (1956) Statistical mechanics: principles and selected applications. Dover Publications, New York
Kuzemsky AL (2014) Thermodynamic limit in statistical physics. Int J Mod Phys B 28:9. https://doi.org/10.1142/S0217979214300047
Reif F (1965) Fundamentals of statistical and thermal physics. Waveland Press, Illinois
Girifalco LA (2000) Statistical mechanics solids. Oxford University Press, New York
Styer DF (2004) What good is the thermodynamic limit? Am J Phys 2004:72. https://doi.org/10.1119/1.1621028
Gurarie V (2007) The equivalence between the canonical and microcanonical ensembles when applied to large systems. Am J Phys 75(9):1. https://doi.org/10.1119/1.2739571
Allen MP, Tildesley DJ (2017) Computer simulation of liquids, 2nd edn. Oxford University Press, New York
Knox JH (1980) Molecular thermodynamics: an introduction to statistical mechanics for chemists. Wiley, Chichester
Andrews FC (1975) Equilibrium statistical mechanics, 2nd edn. Wiley, New York
Denbigh K (1997) The principles of chemical equilibrium, 4th edn. Cambridge University Press, New York
Nash LK (1974) Elements of statistical thermodynamics, 2nd edn. Dover Publications, New York
Fernández-Peralta A, Toral R (2016) Ensemble equivalence for distinguishable particle. Entropy 2016:18. https://doi.org/10.3390/e18070259
Levine IN (2009) Physical chemistry, 6th edn. McGraw-Hill, New York
Berry RS, Rice SA, Ross J (1980) Physical chemistry. Wiley, New York
Fowler WA, Engelbrecht CA, Woosley SE (1978) Nuclear partition functions. ApJ 226:3. https://doi.org/10.1086/156679
Gomez-Jeria J (1983) On some problems in quantum pharmacology i. The partition functions. Int J Quant Chem 1983:23. https://doi.org/10.1002/qua.560230610
Gilson MK, Irikura KK (2010) Symmetry numbers for rigid, flexible, and fluxional molecules: theory and applications. J Phys Chem B 114:49. https://doi.org/10.1021/jp110434s
Kayser R, Kilpatrick JE (1978) Rotational partition function of the symmetric top. J Chem Phys 1978:68. https://doi.org/10.1063/1.435974
Hynne F, Andersen K (1979) Concise derivation of the rotational partition function. Am J Phys 1979:47. https://doi.org/10.1119/1.11951
McDowell RS (1987) Rotational partition functions for spherical-top molecules. J Quant Spectrosc Radiat Transfer 1987:38. https://doi.org/10.1016/0022-4073(87)90028-8
McDowell RS (1988) Rotational partition functions for linear molecules. J Chem Phys 88:361. https://doi.org/10.1063/1.454608
McQuarrie DA (1997) Physical chemistry: a molecular approach. University Science Books, Virginia
Jeschke G (2015) Advanced physical chemistry. Statistical thermodynamics, Gunnar Jeschke
Pauling L, Bright Wilson EJ (1935) Introduction to quantum mechanics: with applications to chemistry. McGraw-Hill Book Company, New York
Ling CY, Izgorodina EI, Coote M (2008) How accurate are approximate methods for evaluating partition functions for hindered internal rotations? J Phys Chem A 112:9. https://doi.org/10.1021/jp710341h
Strekalov ML (2009) Energy levels and partition functions of internal rotation: analytical approximations. Chem Phys 362:1–2. https://doi.org/10.1016/j.chemphys.2009.06.011
Widom B (2002) Statistical mechanics. A concise introduction for chemists. Cambridge University Press, New York
Sandler SI (1990) From molecular theory to thermodynamic models. Part i. Pure fluids. Chem Eng Ed 1990:24
Sandler SI (1990) From molecular theory to thermodynamic models. Part ii. Mixtures. Chem Eng Ed 1990:24
DeVoe H (2020) Thermodynamics and chemistry, 2nd edn. Howard DeVoe, Maryland
Tolman RC (1918) A general theory of energy partition with applications to quantum theory. Phys Rev 11:261. https://doi.org/10.1103/PhysRev.11.261
Lima J, Plastino A (2000) On the classical energy equipartition theorem. Braz J Phys 30:176–180. https://doi.org/10.1590/S0103-97332000000100019
Łuczka J (2020) Quantum counterpart of classical equipartition of energy. J Stat Phys 179:839. https://doi.org/10.1007/s10955-020-02557-5
Paños FJ, Pérez E (2015) Sackur-tetrode equation in the lab. Eur J Phys 36:00503. https://doi.org/10.1088/0143-0807/36/5/055033
Nagata S (2018) An alternative expression to the Sackur-Tetrode entropy formula for a classical ideal gas. Chem Phys 504:8–12. https://doi.org/10.1016/j.chemphys.2018.02.001
Haynes W (ed) (2017) CRC handbook of chemistry and physics, 97th edn. CRC Press, New York
Katiyar RS, Jha PK (2018) Molecular simulations in drug delivery: opportunities and challenges. Front Mol Biosci 8:4. https://doi.org/10.1002/wcms.1358
Lemkul JA, Bevan DR (2012) The role of molecular simulations in the development of inhibitors of amyloid \(\beta\)-peptide aggregation for the treatment of Alzheimer’s disease. ACS Chem Neurosci 3:11. https://doi.org/10.1021/cn300091a
Nabi F, Ahmad O, Khan YA et al. (2021) Computational studies on phylogeny and drug designing using molecular simulations for COVID-19. J Biomol 40:10753–10762. https://doi.org/10.1080/07391102.2021.1947895
Coskuner-Weber O, Uversky VN (2018) Insights into the molecular mechanisms of Alzheimer’s and Parkinson’s diseases with molecular simulations: understanding the roles of artificial and pathological missense mutations in intrinsically disordered proteins related to pathology. Int J Mol Sci 2018:19. https://doi.org/10.3390/ijms19020336
Gubbins KE, Quirke N (eds) (1996) Molecular simulation and industrial applications, methods, examples and prospects. Gordon and Breach Science Publishers, Amsterdam
Nezbeda I, Škvára J (2020) On industrial applications of molecular simulations. Mol Simul 47:846–856. https://doi.org/10.1080/08927022.2020.1828584
de Klerk NJ, van der Maas E, Wagemaker M (2018) Analysis of diffusion in solid-state electrolytes through MD simulations, improvement of the Li-ion conductivity in \(\beta\)-Li\(_3\)PS\(_4\) as an example. ACS Appl Energy Mater 1:3230. https://doi.org/10.1021/acsaem.8b00457
Article CAS PubMed PubMed Central Google Scholar
Natalia Ostrowska MF, Trylska J (2019) Modeling crowded environment in molecular simulations. Front Mol Biosci 6:86. https://doi.org/10.3389/fmolb.2019.00086
Article CAS PubMed PubMed Central Google Scholar
Binder K (ed) (1995) Monte Carlo and molecular dynamics simulations in polymer science. Osford University Press, New York
Scheraga HA, Khalili M, Liwo A (2007) Protein-folding dynamics: overview of molecular simulation techniques. Annu Rev Phys Chem 58:57–83. https://doi.org/10.1146/annurev.physchem.58.032806.104614
Article CAS PubMed Google Scholar
Maginn E (2009) Molecular simulation of ionic liquids: current status and future opportunities. J Phys: Condens Matter 21:373101. https://doi.org/10.1088/0953-8984/21/37/373101
Article CAS PubMed Google Scholar
Klähn M, Seduraman A (2015) What determines CO\(_2\) solubility in ionic liquids? a molecular simulation study. J Phys Chem B 2015:119. https://doi.org/10.1021/acs.jpcb.5b03674
Benjamin I (1997) Molecular structure and dynamics at liquid-liquid interfaces. Annu Rev Phys Chem 1997:48. https://doi.org/10.1146/annurev.physchem.48.1.407
Scalfi L, Salanne M, Rotenberg B (2021) Molecular simulation of electrode-solution interfaces. Annu Rev Phys Chem 72:189. https://doi.org/10.1146/annurev-physchem-090519-024042
Article CAS PubMed Google Scholar
Ungerer P, Nieto-Draghi C, Rousseau B et al. (2007) Molecular simulation of the thermophysical properties of fluids: from understanding toward quantitative predictions. J Mol Liq 134:71–89. https://doi.org/10.1016/j.molliq.2006.12.019
Tuckerman ME (2010) Statistical mechanics: theory and molecular simulation. Oxford University Press, New York
Comments (0)