Neuroimmune Mechanisms Underlying Post-acute Sequelae of SARS-CoV-2 (PASC) Pain, Predictions from a Ligand-Receptor Interactome

Menges D, Ballouz T, Anagnostopoulos A, Aschmann HE, Domenghino A, Fehr JS, et al. Burden of post-COVID-19 syndrome and implications for healthcare service planning: a population-based cohort study. PLoS One. 2021;16(7):e0254523.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–15. https://doi.org/10.1038/s41591-021-01283-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen NN, Hoang VT, Dao TL, Dudouet P, Eldin C, Gautret P. Clinical patterns of somatic symptoms in patients suffering from post-acute long COVID: a systematic review. Eur J Clin Microbiol Infect Dis. 2022;41(4):515–45. https://doi.org/10.1007/s10096-022-04417-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583–90. https://doi.org/10.1038/s41591-022-01689-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moreno-Pérez O, Merino E, Leon-Ramirez J-M, Andres M, Ramos JM, Arenas-Jiménez J, et al. Post-acute COVID-19 syndrome. Incidence and risk factors: a Mediterranean cohort study. J Infect. 2021;82(3):378–83. https://doi.org/10.1016/j.jinf.2021.01.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meringer H, Mehandru S. Gastrointestinal post-acute COVID-19 syndrome. Nat Rev Gastroenterol Hepatol. 2022;19(6):345–6. https://doi.org/10.1038/s41575-022-00611-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie Y, Al-Aly Z. Risks and burdens of incident diabetes in long COVID: a cohort study. Lancet Diabetes Endocrinol. 2022;10(5):311–21. https://doi.org/10.1016/s2213-8587(22)00044-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haider S, Janowski AJ, Lesnak JB, Hayashi K, Dailey DL, Chimenti R, et al. A comparison of pain, fatigue, and function between post-COVID-19 condition, fibromyalgia, and chronic fatigue syndrome: a survey study. Pain. 2023;164(2):385–401. https://doi.org/10.1097/j.pain.0000000000002711.

Article  PubMed  Google Scholar 

Zhang H, Zang C, Xu Z, Zhang Y, Xu J, Bian J, et al. Data-driven identification of post-acute SARS-CoV-2 infection subphenotypes. Nat Med. 2023;29(1):226–35. https://doi.org/10.1038/s41591-022-02116-3.

Article  CAS  PubMed  Google Scholar 

Gong WY, Abdelhamid RE, Carvalho CS, Sluka KA. Resident macrophages in muscle contribute to development of hyperalgesia in a mouse model of noninflammatory muscle pain. J Pain. 2016;17(10):1081–94. https://doi.org/10.1016/j.jpain.2016.06.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gregory NS, Brito RG, Fusaro MC, Sluka KA. ASIC3 is required for development of fatigue-induced hyperalgesia. Mol Neurobiol. 2016;53(2):1020–30. https://doi.org/10.1007/s12035-014-9055-4.

Article  CAS  PubMed  Google Scholar 

de Azambuja G, Jorge CO, Gomes BB, Lourenço HR, Simabuco FM, Oliveira-Fusaro MCG. Regular swimming exercise prevented the acute and persistent mechanical muscle hyperalgesia by modulation of macrophages phenotypes and inflammatory cytokines via PPARγ receptors. Brain Behav Immun. 2021;95:462–76. https://doi.org/10.1016/j.bbi.2021.05.002.

Article  CAS  PubMed  Google Scholar 

Hayashi K, Lesnak JB, Plumb AN, Rasmussen LA, Sluka KA. P2X7-NLRP3-Caspase-1 signaling mediates activity-induced muscle pain in male but not female mice. Pain. 2023. https://doi.org/10.1097/j.pain.0000000000002887.

Article  PubMed  Google Scholar 

Laumet G, Ma J, Robison AJ, Kumari S, Heijnen CJ, Kavelaars A. T Cells as an emerging target for chronic pain therapy. Front Mol Neurosci. 2019;12:216. https://doi.org/10.3389/fnmol.2019.00216.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yap HY, Tee SZ, Wong MM, Chow SK, Peh SC, Teow SY. Pathogenic role of immune cells in rheumatoid arthritis: implications in clinical treatment and biomarker development. Cells. 2018;7(10). https://doi.org/10.3390/cells7100161.

Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46(2):183–96. https://doi.org/10.1016/j.immuni.2017.02.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu W, Zhang X, Jiang Y, Liu X, Huang L, Wei Q, et al. Alterations in peripheral T cell and B cell subsets in patients with osteoarthritis. Clin Rheumatol. 2020;39(2):523–32. https://doi.org/10.1007/s10067-019-04768-y.

Article  PubMed  Google Scholar 

Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33–42. https://doi.org/10.1038/nrrheum.2010.196.

Article  CAS  PubMed  Google Scholar 

Teodorczyk-Injeyan JA, McGregor M, Triano JJ, Injeyan SH. Elevated production of nociceptive CC chemokines and sE-selectin in patients with low back pain and the effects of spinal manipulation: a nonrandomized clinical trial. Clin J Pain. 2018;34(1):68–75. https://doi.org/10.1097/ajp.0000000000000507.

Article  PubMed  Google Scholar 

Merriwether EN, Agalave NM, Dailey DL, Rakel BA, Kolker SJ, Lenert ME, et al. IL-5 mediates monocyte phenotype and pain outcomes in fibromyalgia. Pain. 2021;162(5):1468–82. https://doi.org/10.1097/j.pain.0000000000002089.

Article  CAS  PubMed  Google Scholar 

Uçeyler N, Häuser W, Sommer C. Systematic review with meta-analysis: cytokines in fibromyalgia syndrome. BMC Musculoskelet Disord. 2011;12:245. https://doi.org/10.1186/1471-2474-12-245.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bäckryd E, Tanum L, Lind AL, Larsson A, Gordh T. Evidence of both systemic inflammation and neuroinflammation in fibromyalgia patients, as assessed by a multiplex protein panel applied to the cerebrospinal fluid and to plasma. J Pain Res. 2017;10:515–25. https://doi.org/10.2147/jpr.S128508.

Article  PubMed  PubMed Central  Google Scholar 

Imamura M, Targino RA, Hsing WT, Imamura S, Azevedo RS, Boas LS, et al. Concentration of cytokines in patients with osteoarthritis of the knee and fibromyalgia. Clin Interv Aging. 2014;9:939–44. https://doi.org/10.2147/cia.S60330.

Article  PubMed  PubMed Central  Google Scholar 

Ji RR, Chamessian A, Zhang YQ. Pain regulation by non-neuronal cells and inflammation. Science (New York, NY). 2016;354(6312):572–7. https://doi.org/10.1126/science.aaf8924.

Article  CAS  Google Scholar 

Wangzhou A, Paige C, Neerukonda SV, Naik DK, Kume M, David ET, et al. A ligand-receptor interactome platform for discovery of pain mechanisms and therapeutic targets. Sci Signal. 2021;14(674). https://doi.org/10.1126/scisignal.abe1648.

Arunachalam PS, Wimmers F, Mok CKP, Perera R, Scott M, Hagan T, et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science (New York, NY). 2020;369(6508):1210–20. https://doi.org/10.1126/science.abc6261.

Article  CAS  Google Scholar 

Krämer B, Knoll R, Bonaguro L, ToVinh M, Raabe J, Astaburuaga-García R, et al. Early IFN-α signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity. 2021;54(11):2650-69.e14. https://doi.org/10.1016/j.immuni.2021.09.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi F, Zhang W, Huang J, Fu L, Zhao J. Single-cell RNA sequencing analysis of the immunometabolic rewiring and immunopathogenesis of coronavirus disease 2019. Front Immunol. 2021;12:651656. https://doi.org/10.3389/fimmu.2021.651656.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silvin A, Chapuis N, Dunsmore G, Goubet AG, Dubuisson A, Derosa L, et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell. 2020;182(6):1401-18.e18. https://doi.org/10.1016/j.cell.2020.08.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu G, Qi F, Li H, Yang Q, Wang H, Wang X, et al. The differential immune responses to COVID-19 in peripheral and lung revealed by single-cell RNA sequencing. Cell Discov. 2020;6:73. https://doi.org/10.1038/s41421-020-00225-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tavares-Ferreira D, Shiers S, Ray PR, Wangzhou A, Jeevakumar V, Sankaranarayanan I, et al. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci Transl Med. 2022;14(632):eabj8186. https://doi.org/10.1126/scitranslmed.abj8186.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 2002;416(6876):52–8. https://doi.org/10.1038/nature719.

Article  CAS  PubMed  Google Scholar 

Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14(1):128. https://doi.org/10.1186/1471-2105-14-128.

Article  PubMed  PubMed Central  Google Scholar 

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7. https://doi.org/10.1093/nar/gkw377.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif