Is There a Relationship Between Mating and Pathogenesis in Two Human Fungal Pathogens, Candida albicans and Candida glabrata?

Berman JJ. The Magnitude and diversity of infectious diseases. Taxonomic Guide to Infectious Diseases. Academic Press; 2012 pp 3–5.

• Butler G. Fungal sex and pathogenesis. Clin Microbiol Rev. 2010;23:140–59. An extremely comprehensive review of mating in some of the best known fungal pathogens.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Heitman J. Evolution of eukaryotic microbial pathogens via covert sexual reproduction. Cell Host Microbe. 2010;8:86–99. A detailed look at mating systems in C. neoformans, C. albicans and A. fumigatus, covers genomic and evolutionary approaches.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ene IV, Bennett RJ, Anderson MZ. Mechanisms of genome evolution in Candida albicans. Curr Opin Microbiol. 2019;52:47–54.

• Forche A, Alby K, Schaefer D, Johnson AD, Berman J, Bennett RJ. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 2008;6:1084–97. A comprehensive study that identified Spo11 as essential for genetic recombination and generation of genetic diversity in C. albicans during parasexual mating.

Article  CAS  Google Scholar 

Hanson SJ, Byrne KP, Wolfe KH. Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system. Proc Natl Acad Sci U S A. 2014;111:E4851–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Wong S, Fares MA, Zimmermann W, Butler G, Wolfe KH. Evidence from comparative genomics for a complete sexual cycle in the “asexual” pathogenic yeast Candida glabrata. Genome Biol. 2003;4:R10. One of the first genomic analysis of C. glabrata showing many of the genes involved in sexual reproduction are present on the genome.

Article  PubMed  PubMed Central  Google Scholar 

Butler G, Kenny C, Fagan A, Kurischko C, Gaillardin C, Wolfe KH. Evolution of the MAT locus and its Ho endonuclease in yeast species. Proc Natl Acad Sci. 2004;101:1632–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gabaldón T, Martin T, Marcet-Houben M, Durrens P, Bolotin-Fukuhara M, Lespinet O, et al. Comparative genomics of emerging pathogens in the Candida glabrata clade. BMC Genomics. 2013;14:623.

Article  PubMed  PubMed Central  Google Scholar 

Nieuwenhuis BPS, James TY. The frequency of sex in fungi. Biological Sciences: Philosophical Transactions of the Royal Society B; 2016. p. 371.

Google Scholar 

• Butler G, Rasmussen MD, Lin MF, Santos MAS, Sakthikumar S, Munro CA, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459:657–62. Genomes of 6 Candida species are compared and the key components of mating and meiosis pathways are missing from some species and present and non-functional in others.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Billiard S, López-Villavicencio M, Hood ME, Giraud T. Sex, outcrossing and mating types: unsolved questions in fungi and beyond. J Evol Biol. 2012;25:1020–38.

Article  CAS  PubMed  Google Scholar 

Billiard S, López-Villavicencio M, Devier B, Hood ME, Fairhead C, Giraud T. Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biol Rev. 2011;86:421–42.

Article  PubMed  Google Scholar 

Halliday CL, Carter DA. Clonal reproduction and limited dispersal in an environmental population of Cryptococcus neoformans var. gattii isolates from Australia. J Clin Microbiol. 2003;41:703–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, et al. Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility. Antimicrob Agents Chemother Curr Infect Dis Rep. 2013;8:2892–4.

Google Scholar 

Haber JE. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics. 2012;191:33–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herskowitz I. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev. 1988;52:536–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hagen DC, Bruhn L, Westby CA, Sprague GF. Transcription of alpha-specific genes in Saccharomyces cerevisiae: DNA sequence requirements for activity of the coregulator alpha 1. Mol Cell Biol. 1993;13:6866–75.

CAS  PubMed  PubMed Central  Google Scholar 

Zehr J, Heaney M, Sapiro V, Lo S. Letters to nature. Nature. 2002;415:633–7.

Google Scholar 

Kabir MA, Hussain MA, Ahmad Z. Candida albicans : a model organism for studying fungal pathogens. ISRN Microbiol. 2012;2012:1–15.

Article  Google Scholar 

Gow NAR, Brown AJP, Odds FC. Fungal morphogenesis and host invasion. CurrOpinMicrobiol. 2002;5:366–71.

CAS  Google Scholar 

Mukaremera L, Lee KK, Mora-Montes HM, Gow NAR. Candida albicans yeast, pseudohyphal, and hyphal morphogenesis differentially affects immune recognition. Front Immunol. 2017;8:1–12.

Article  Google Scholar 

Perez-Nadales E, Almeida Nogueira MF, Baldin C, Castanheira S, elGhalid M, Grund E, et al. Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol. 2014;70:42–67 Academic Press Inc.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119–28.

• Hull CM, Raisner RM, Johnson AD. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science (1979). 2000;289:307–10. One of the seminal papers describing sexual cycle in a human fungal pathogen.

CAS  Google Scholar 

Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, et al. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci. 2004;101:7329–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magee BB, Legrand M, Alarco AM, Raymond M, Magee PT. Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans. Mol Microbiol. 2002;46:1345–51.

Article  CAS  PubMed  Google Scholar 

Lin CH, Choi A, Bennett RJ. Defining pheromone-receptor signaling in Candida albicans and related asexual Candida species. Mol Biol Cell. 2011;22:4918–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bennett RJ, Uhl MA, Miller MG, Johnson AD. Identification and characterization of a Candida albicans mating pheromone. Mol Cell Biol. 2003;23:8189–201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson A. The biology of mating in Candida albicans. Nat Rev Microbiol. 2003;1:106–16.

Article  CAS  PubMed  Google Scholar 

Hull CM, Johnson AD. Identification of a mating type-like locus in the asexual pathogenic yeast Candida Albicans. Science. 1999;285(5431):1271–5.

Skrzypek MS, Binkley J, Binkley G, Miyasato SR, Simison M, Sherlock G. The Candida Genome Database (CGD): incorporation of assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res. 2017;45:D592–6.

Article  CAS  PubMed  Google Scholar 

Janbon G, Quintin J, Lanternier F, d’Enfert C. Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Genes Immun. 2019;20:403–14.

Article  PubMed  Google Scholar 

Miller MG, Johnson AD. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell. 2002;110:293–302.

Article  CAS  PubMed  Google Scholar 

Ciudad T, Bellido A, Hermosa B, Andaluz E, Larriba G. DLH1, the Candida albicans homologue of the meiosis-specific DMC1, is not involved in DNA repair but catalyses spontaneous interhomologue recombination and might promote non-crossover events. Cell Microbiol. 2020;22(1):e13137.

Todd RT, Wikoff TD, Forche A, Selmecki A. Genome plasticity in Candida albicans is driven by long repeat sequences. Elife. 2019;8:1–33.

Article  Google Scholar 

Mba IE, Nweze EI, Eze EA, Anyaegbunam ZKG. Genome plasticity in Candida albicans: a cutting-edge strategy for evolution, adaptation, and survival. Infect Genet Evol. 2022;99:105256.

Article  CAS  PubMed  Google Scholar 

Tzung KW, Williams RM, Scherer S, Federspiel N, Jones T, Hansen N, et al. Genomic evidence for a complete sexual cycle in Candida albicans. Proc Natl Acad Sci U S A. 2001;98:3249–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang G, Yi S, Sahni N, Daniels KJ, Srikantha T, Soll DR. N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS Pathog. 2010;6(3):e1000806. https://doi.org/10.1371/journal.ppat.1000806.

Bialková A, Subík J. Biology of the pathogenic yeast Candida glabrata. Folia Microbiol (Praha). 2006;51(1):3–20. https://doi.org/10.1007/BF02931443.

• Gabaldón T, Martin T, Marcet-Houben M, Durrens P, Bolotin-Fukuhara M, Lespinet O, et al. Comparative genomics of emerging pathogens in the Candida glabrata clade. BMC Genomics. 2013;14:623. A ground-breaking paper dissecting the genes involved in mating and where they are located in the genome of C. glabrata.

Article  PubMed  PubMed Central  Google Scholar 

Muller H, Hennequin C, Gallaud J, Dujon B, Fairhead C. The asexual yeast Candida glabrata maintains distinct a and α haploid mating types. Eukaryot Cell. 2008;7:848–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walsh DW, Wolfe KH, Butler G. Genomic differences between Candida glabrata and Saccharomyces cerevisiae around the MRPL28 and GCN3 loci. Yeast. 2002;19:991–4.

Article  CAS  PubMed  Google Scholar

留言 (0)

沒有登入
gif