Vaara M. Polymyxins and their potential next generation as therapeutic antibiotics. Front Microbiol. 2019;10:1–6. https://doi.org/10.3389/fmicb.2019.01689.
Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect. Public Health. 2017;10:369–78. https://doi.org/10.1016/j.jiph.2016.08.007.
Singh N, Sit MT, Chung DM, Lopez AA, Weerackoon R, Yeh PJ. How often are antibiotic-resistant bacteria said to “evolve” in the news? PLoS One. 2016;11:1–12. https://doi.org/10.1371/journal.pone.0150396.
Sharma VK, Johnson N, Cizmas L, McDonald TJ, Kim H. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere. 2016;150:702–14. https://doi.org/10.1016/j.chemosphere.2015.12.084.
Article CAS PubMed Google Scholar
Wei J, Wenjie Y, Ping L, Na W, Haixia R, Xuequn Z. Antibiotic resistance of Klebsiella pneumoniae through β-arrestin recruitment-induced β-lactamase signaling pathway. Exp Ther Med. 2018;15:2247–54. https://doi.org/10.3892/etm.2018.5728.
Article CAS PubMed PubMed Central Google Scholar
Bradley JS, Garau J, Lode H, Rolston KVI, Wilson SE, Quinn JP. Carbapenems in clinical practice: a guide to their use in serious infection. Int J Antimicrob Agents. 1999;11:93–100. https://doi.org/10.1016/S0924-8579(98)00094-6.
Article CAS PubMed Google Scholar
Torres JA, Villegas MV, Quinn JP. Current concepts in antibiotic-resistant gram-negative bacteria. Expert Rev Anti Infect Ther. 2007;5(5):833–43. https://doi.org/10.1586/14787210.5.5.833.
Article CAS PubMed Google Scholar
Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother. 2011;55:4943–60. https://doi.org/10.1128/AAC.00296-11.
Article CAS PubMed PubMed Central Google Scholar
Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A. 2015;112:E3574–81. https://doi.org/10.1073/pnas.1501049112.
Article CAS PubMed PubMed Central Google Scholar
•• Indrajith S, Mukhopadhyay AK, Chowdhury G, Farraj DAA, Alkufeidy RM, Natesan S, et al. Molecular insights of Carbapenem resistance Klebsiella pneumoniae isolates with focus on multidrug resistance from clinical samples. J Infect Public Health. 2021;14:131–8. https://doi.org/10.1016/j.jiph.2020.09.018. (This article evaluated the distribution pattern of carbapenem resistance genes along with the major porins among K. pneumoniae- OmpK35 and OmpK36 where the loss of porins correlates with other mechanisms to contribute high carbapenem resistance in the bacteria.)
Pitout JDD, Gregson DB, Church DL, Laupland KB. Population-based laboratory surveillance for AmpC β-lactamase- producing Escherichia coli, Calgary. Emerg Infect Dis. 2007;13:443–8. https://doi.org/10.3201/eid1303.060447.
Article CAS PubMed PubMed Central Google Scholar
Jacoby GA. AmpC Β-lactamases. Clin Microbiol Rev. 2009;22:161–82. https://doi.org/10.1128/CMR.00036-08.
Article CAS PubMed PubMed Central Google Scholar
Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):252–75. https://doi.org/10.1093/femsre/fux013.
Article CAS PubMed Google Scholar
Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013;4(3):223–9. https://doi.org/10.4161/viru.23724.
Article PubMed PubMed Central Google Scholar
Dever LA, Dermody TS. Mechanisms of bacterial resistance to antibiotics. Arch Intern Med. 1991;151(5):886–95. https://doi.org/10.1001/archinte.1991.00400050040010.
Article CAS PubMed Google Scholar
Abbas AF, Al-Saadi AG, Hussein AK, Al-Thaheb AO. Role of outer membrane proteins in virulence of Klebsiella ozaenae and antibiotic sensitivity. J Phys Conf Ser. 2019;1294(6):062088. https://doi.org/10.1088/1742-6596/1294/6/062088.
Gold HS, Moellering RC Jr. Antimicrobial-drug resistance. N Engl J Med. 1996;335(19):1445–53.
Article CAS PubMed Google Scholar
Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ, Mahmood SS, Tanomand A, Yousefi M, Asgharzadeh M, Yousefi B, Kafil HS. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist. 2019;12:965–975. https://doi.org/10.2147/IDR.S199844.
Aguilera-Alonso D, Escosa-García L, Saavedra-Lozano J, Cercenado E, Baquero-Artigao F. Carbapenem-resistant gram-negative bacterial infections in children. Antimicrob Agents Chemother. 2020;64(3):e02183-e2219.
Article CAS PubMed PubMed Central Google Scholar
Kong HK, Pan Q, Lo WU, Liu X, Law COK, Chan TF, et al. Fine-tuning carbapenem resistance by reducing porin permeability of bacteria activated in the selection process of conjugation. Sci Rep. 2018;8:1–11. https://doi.org/10.1038/s41598-018-33568-8.
Martin RM, Bachman MA. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol. 2018;8:1–15. https://doi.org/10.3389/fcimb.2018.00004.
Ashurst JV, Dawson A. Klebsiella Pneumonia. 2023. In StatPearls. StatPearls Publishing.
Podschun R, Ullmann U. Bacteriocin typing of Klebsiella spp. isolated from different sources. Zentralbl Hyg Umweltmed=Int J Hyg Environ Med. 1996;198(3):258–64.
Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370:1198–208. https://doi.org/10.1056/nejmoa1306801.
Article CAS PubMed PubMed Central Google Scholar
Schroll C, Barken KB, Krogfelt KA, Struve C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 2010;10:1–10. https://doi.org/10.1186/1471-2180-10-179.
Davies J. Origins and evolution of antibiotic resistance. Microbiologia. 1996;12:9–16. https://doi.org/10.1128/mmbr.00016-10.
Article CAS PubMed Google Scholar
Ferreira RL, Da Silva BCM, Rezende GS, Nakamura-Silva R, Pitondo-Silva A, Campanini EB, et al. High prevalence of multidrug-resistant Klebsiella pneumoniae harboring several virulence and β-lactamase encoding genes in a Brazilian intensive care unit. Front Microbiol. 2019;9:3198. https://doi.org/10.3389/fmicb.%202018.03198.
Lee YQ, Sri S, Sri L, Chong CW, Karunakaran R, Vellasamy KM, et al. Characterisation of non-carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae based on their clinical and molecular profile in Malaysia. Antibiotics (Basel). 2022;10(11):1670.
Organización Mundial de la Salud. Report on the burden of endemic health care-associated infection worldwide clean care is safer care. World Heal Organ. 2011;3:1–21.
• Cao Z, Yue C, Kong Q, Liu Y, Li J. Risk factors for a hospital-acquired carbapenem-resistant Klebsiella pneumoniae bloodstream infection: A Five-Year Retrospective Study. Infect Drug Resist. 2022;15:641–54. https://doi.org/10.2147/IDR.S342103. (This article analyzed the risk factors of hospital-acquired K. pneumoniae bloodstream infection and the prevalence of drug resistance over the recent five years. Their multivariant analysis also revealed how β-lactam/β-lactamase inhibitor combinations (BLBLIs) are becoming an independent risk factor for hospital-acquired infections.)
Article CAS PubMed PubMed Central Google Scholar
Hu FP, Guo Y, Zhu DM, Wang F, Jiang XF, Xu YC, Zhang XJ, Zhang CX, Ji P, Xie Y, Kang M. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005–2014. Clin Microbiol Infect. 2016;1(22):S9-14.
Li Y, Shen H, Zhu C, Yu Y. Carbapenem-resistant Klebsiella pneumoniae infections among ICU admission patients in Central China : prevalence and prediction model. Biomed Res Int. 2019;2019. https://doi.org/10.1155/2019/9767313.
Lin YT, Siu LK, Lin JC, Chen TL, Tseng CP, Yeh KM, Chang FY, Fung CP. Seroepidemiology of Klebsiella pneumoniae colonizing the intestinal tract of healthy Chinese and overseas Chinese adults in Asian countries. BMC Microbiol. 2012;12(1):1–7.
Russo TA, Olson R, Fang CT, Stoesser N, Miller M, MacDonald U, Hutson A, Barker JH, La Hoz RM, Johnson JR. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J Clin Microbiol. 2018;56(9):e00776-18.
Article CAS PubMed PubMed Central Google Scholar
Chang D, Sharma L, Dela Cruz CS, Zhang D. Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Front Microbiol. 2021;12:1–9. https://doi.org/10.3389/fmicb.2021.750662.
Zhang S, Yang G, Ye Q, Wu Q, Zhang J, Huang Y. Phenotypic and genotypic characterization of Klebsiella pneumoniae isolated from retail foods in China. Front Microbiol. 2018;9:1–11. https://doi.org/10.3389/fmicb.2018.00289.
Shao C, Wang W, Liu S, Zhang Z, Jiang M, Zhang F. Molecular epidemiology and drug resistant mechanism of carbapenem-resistant Klebsiella pneumoniae in elderly patients with lower respiratory tract infection. Front Public Heal. 2021;9:1–10. https://doi.org/10.3389/fpubh.2021.669173.
Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol. 2008;29(12):1099–106.
Lan P, Jiang Y, Zhou J, Yu Y. A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae. J Glob Antimicrob Resist. 2021;25:26–34. https://doi.org/10.1016/j.jgar.2021.02.020.
Article CAS PubMed Google Scholar
Borer A, Saidel-Odes L, Eskira S, Nativ R, Riesenberg K, Livshiz-Riven I, et al. Risk factors for developing clinical infection with carbapenem-resistant Klebsiella pneumoniae in hospital patients initially only colonized with carbapenem-resistant K pneumoniae. Am J Infect Control. 2012;40:421–5. https://doi.org/10.1016/j.ajic.2011.05.022.
Comments (0)