Status of Drug Discovery in Wetlands Through a Lens of Bioprospecting for New Antimicrobials Being Produced by Microorganisms

Serwecińska L. Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water. 2020; https://doi.org/10.3390/w12123313.

WHO: Antimicrobial Resistance. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.

Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial antibiotic resistance: the most critical pathogens. Pathogens. 2021; https://doi.org/10.3390/pathogens10101310.

Zhang Z, Zhang Q, Wang T, Xu N, Lu T, Hong W, Penuelas J, Gillings M, Wang M, Gao W, Qian H. Assessment of global health risk of antibiotic resistance genes. Nat commun. 2022; https://doi.org/10.1038/s41467-022-29283-8.

Larsson DJ, Flach CF. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022; https://doi.org/10.1038/s41579-021-00649-x.

Algammal A, Hetta HF, Mabrok M, Behzadi P. Emerging multidrug-resistant bacterial pathogens “superbugs”: a rising public health threat. Front Microbiol. 2023;

León-Buitimea A, Garza-Cárdenas CR, Garza-Cervantes JA, Lerma-Escalera JA, Morones-Ramírez JR. The demand for new antibiotics: antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front microbiol. 2020;

Kalpana S, Lin W-Y, Wang Y-C, Fu Y, Lakshmi A, Wang H-Y. Antibiotic resistance diagnosis in ESKAPE pathogens—a review on proteomic perspective. Diagnos. 2023; https://doi.org/10.3390/diagnostics13061014.

Ramay BM, Caudell MA, Cordón-Rosales C, Archila LD, Palmer GH, Jarquin C, Moreno P, McCracken JP, Rosenkrantz L, Amram O, Omulo S, Call DR. Antibiotic use and hygiene interact to influence the distribution of antimicrobial-resistant bacteria in low-income communities in Guatemala. Sci rep. 2020; https://doi.org/10.1038/s41598-020-70741-4.

Baral B, Mozafari MR. Strategic moves of “superbugs” against available chemical scaffolds: signaling, regulation, and challenges. ACS Pharmacol Translat Sci. 2020; https://doi.org/10.1021/acsptsci.0c00005.

Algammal AM, Hetta HF, Elkelish A, Alkhalifah DHH, Hozzein WN, Batiha GES, El Nahhas N, Mabrok MA. Methicillin-resistant Staphylococcus aureus (MRSA): one health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect Drug Resist. 2020; https://doi.org/10.2147/idr.s272733.

De Oliveira, D. M., Forde, B. M., Kidd, T. J., Harris, P. N., Schembri, M. A., Beatson, S. A., PAterson, D. L., & Walker, M. J. Antimicrobial resistance in ESKAPE pathogens. Clin microbiol rev, 2020 https://doi.org/10.1128/CMR.00181-19

Denissen J, Reyneke B, Waso-Reyneke M, Havenga B, Barnard T, Khan S, Khan W. Prevalence of ESKAPE pathogens in the environment: antibiotic resistance status, community-acquired infection and risk to human health. Int J Hygiene Environ Health. 2022 10.1016/j.ijheh.2022.114006; In this study, researchers aim to investigate the prevalence and antibiotic resistance status of ESKAPE pathogens and assess the associated risk to human health

Panda SK, Buroni S, Swain SS, Bonacorsi A, da Fonseca Amorim EA, Kulshrestha M, Nascimento da Silva LC, Tiwari V. Recent advances to combat ESKAPE pathogens with special reference to essential oils. Front Microbiol. 2022; https://doi.org/10.3389/fmicb.2022.1029098.

Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen A-L, Cheng AA, Liu S, Min SY, Miroshnichenko A, Tran H-K, Werfalli RE, Nasir JA, Oloni M, Speicher DJ, Florescu A, Singh B, et al. Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic acids res. 2020;2020 https://doi.org/10.1093/nar/gkz935.

Lin H, Chen W, Zhou R, Yang J, Wu Y, Zheng J, Dei S, Wu G, Sun Z, Li J, Chen X. Characteristics of the plasmid-mediated colistin-resistance gene mcr-1 in Escherichia coli isolated from a veterinary hospital in Shanghai. Front Microbiol. 2022:1002827.

Saleem M, Hassan A, Li F, Lu Q, Ponomareva LV, Parkin S, Sun C, Thorson JS, Shaaban KA, Sajid I. Bioprospecting of desert actinobacteria with special emphases on griseoviridin, mitomycin C and a new bacterial metabolite producing Streptomyces sp. PU-KB10–4. BMC microbiol. 2023; https://doi.org/10.1186/s12866-023-02770-8. This research aims to discover and characterize novel bioactive compounds from actinobacteria, which could have implications for drug discovery, antibiotic development and other biotechnological applications

Chen L, Wang Z, Du S, Wang G. Antimicrobial activity and functional genes of actinobacteria from coastal wetland. Current Microbiol. 2021; https://doi.org/10.1007/s00284-021-02560-3. The study identifies culturable actinobacteria isolated from coastal wetlands with broad-spectrum antimicrobial activities and also emphasizes the importance of gene clusters of polyketide synthase (PKS) and non-ribosomal peptide synthase (NPRS)

Chen L, Du S, Qu WY, Guo FR, Wang GY. Biosynthetic potential of culturable bacteria associated with Apostichopus japonicus. J appl microbiol. 2019; https://doi.org/10.1111/jam.14453.

Anggelina AC, Pringgenies D, Setyati WA. Presence of biosynthetic gene clusters (NRPS/PKS) in actinomycetes of mangrove sediment in Semarang and Karimunjawa Indonesia. Environ Nat Res J. 2021; https://doi.org/10.32526/ennrj/19/202100050.

Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr opin microbiol. 2019; https://doi.org/10.1016/j.mib.2019.10.008.

Hashmi MZ, Strezov V, Varma A, editors. Antibiotics and antibiotics resistance genes in soils: monitoring, toxicity, risk assessment and management, vol. 51. Springer; 2017. https://doi.org/10.1007/978-3-319-66260-2_1.

Book  Google Scholar 

De Simeis D, Serra S. Actinomycetes: a never-ending source of bioactive compounds—an overview on antibiotics production. Antibiotics. 2021;

Zamora-Quintero AY, Torres-Beltrán M, Guillén Matus DG, Oroz-Parra I, Millán-Aguiñaga N. Rare actinobacteria isolated from the hypersaline Ojo de Liebre Lagoon as a source of novel bioactive compounds with biotechnological potential. In: Microbiology. (Reading England); 2022. https://doi.org/10.1099/mic.0.001144.

Benhadj M, Metrouh R, Menasria T, Gacemi-Kirane D, Slim FZ, Ranque S. Broad-spectrum antimicrobial activity of wetland-derived Streptomyces sp ActiF450. EXCLI j. 2020; https://doi.org/10.17179/excli2020-1124.

Velho-Pereira S, Kamat NM. Antimicrobial screening of actinobacteria using a modified cross-streak method. India j pharmaceut sci. 2011;

Yu J, Zhang L, Liu Q, Qi X, Ji Y, Kim BS. Isolation and characterization of actinobacteria from Yalujiang coastal wetland, North China. Asia Pacific J Trop Biomed. 2015; https://doi.org/10.1016/j.apjtb.2015.04.007.

Almasi F, Kafshnouchi M, Mohammadipanah F, Hamedi J. Fruit wrapping kraft coated paper promotes the isolation of actinobacteria using ex situ and in situ methods. Folia Microbiol. 2021; https://doi.org/10.1007/s12223-021-00907-8. The article demonstrates the new ex situ and in situ cultivation methods that were introduced for isolation of actinobacteria

Jung D, Machida K, Nakao Y, Owen JS, He S, Kindaichi T, Ohashi A, Aoi Y. Cultivation of previously uncultured sponge-associated bacteria using advanced cultivation techniques: a perspective on possible key mechanisms. Front Marine Sci. 2022; https://doi.org/10.3389/fmars.2022.963277. This study aims to identify actinomycetes isolates from coastal wetlands as a way of making strides toward the development of new antimicrobial products

Kalam S, Basu A, Ahmad I, Sayyed RZ, El-Enshasy HA, Dailin DJ, Suriani NL. Recent understanding of soil acidobacteria and their ecological significance: a critical review. Front Microbiol. 2020; https://doi.org/10.3389/fmicb.2020.580024.

Wicaksono WA, Cernava T, Berg C, Berg G. Bog ecosystems as a playground for plant-microbe coevolution: bryophytes and vascular plants harbor functionally adapted bacteria. Microbiome. 2021; https://doi.org/10.1186/s40168-021-01117-7. This study shows the significance of bog ecosystems as a place for plant-microbe coevolution which influences healthy functioning and biodiversity in the ecosystem

Guajardo-Leiva S, Alarcón J, Gutzwiller F, Gallardo-Cerda J, Acuña-Rodríguez IS, Molina-Montenegro M, Crandall KA, Pérez-Losada M, Castro-Nallar E. Source and acquisition of rhizosphere microbes in Antarctic vascular plants. Front microbiol. 2022; https://doi.org/10.3389/fmicb.2022.916210.

Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, Shaw AJ, Weston DJ. Habitat-adapted microbial communities mediate Sphagnum peat moss resilience to warming. New Phytol. 2022; https://doi.org/10.1111/nph.18072.

Kitson E, Bell NGA. The response of microbial communities to peatland drainage and rewetting A review. Front microbiol. 2020; https://doi.org/10.3389/fmicb.2020.582812.

Tveit AT, Kiss A, Winkel M, Horn F, Hájek T, Svenning MM, Wagner D, Liebner S. Environmental patterns of brown moss- and Sphagnum-associated microbial communities. Sci rep. 2020; https://doi.org/10.1038/s41598-020-79773-2.

Navratilova J, Navratil J, Hajek M. Medium-term changes of vegetation composition on fens of the rural landscape, tested using fixed permanent plots. Folia Geobotan. 2022; https://doi.org/10.1007/s12224-022-09421-2.

Carrell AA, Kolton M, Glass JB, Pelletier DA, Warren MJ, Kostka JE, Iversen CM, Hanson PJ, Weston DJ. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Global change biol. 2019; https://doi.org/10.1111/gcb.14715.

Alvarenga DO, Rousk K. Unraveling host–microbe interactions and ecosystem functions in moss–bacteria symbioses. J Experiment Botan. 2022; https://doi.org/10.1093/jxb/erac091.

Rusin LY. Metagenomics and biodiversity of sphagnum bogs. Mol Biol. 2016; https://doi.org/10.1134/S0026893316050150.

Sadeghi S, Petermann BJ, Steffan JJ, Brevik EC, Gedeon C. Predicting microbial responses to changes in soil physical and chemical properties under different land management. Appl Soil Ecol. 2023; https://doi.org/10.1016/j.apsoil.2023.104878.

Ivanova AA, Beletsky AV, Rakitin AL, Kadnikov VV, Philippov DA, Mardanov AV, Ravin NV, Dedysh SN. Closely located but totally distinct: highly contrasting prokaryotic diversity patterns in raised bogs and eutrophic fens. Microorgan. 2020; https://doi.org/10.3390/microorganisms8040484. The study aims to investigate and compare the microbial diversity patterns in two different types of wetland ecosystems: raised bogs and eutrophic fens

Zheng Q, Hu Y, Zhang S, Noll L, Böckle T, Dietrich M, Herbold CW, Eichorst SA, Woebken D, Richter A, Wanek W. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil biol biochem. 2019; https://doi.org/10.1016/j.soilbio.2019.107521.

Kang E, Li Y, Zhang X, Yan Z, Wu H, Li M, Yan L, Zhang K, Wang J, Kang X. Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland. Sci Total Environ. 2021; https://doi.org/10.1016/j.scitotenv.2021.145780.

Jones RT, Robeson MS, Lauber CL, Hamaday M, Knight R, Fierer N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009; https://doi.org/10.1038/ismej.2008.127.

Kim HS, Lee SH, Jo HY, Finneran KT, Kwon MJ. Diversity and composition of soil Acidobacteria and Proteobacteria communities as a bacterial indicator of past land-use change from forest to farmland. Sci total environ. 2021; https://doi.org/10.1016/j.scitotenv.2021.148944.

Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010; https://doi.org/10.1038/ismej.2010.58.

Malard LA, Anwar MZ, Jacobsen CS, Pearce DA. Biogeographical patterns in soil bacterial communities across the Arctic region. FEMS Microbiol Ecol. 2019; https://doi.org/10.1093/femsec/fiz128.

Minayeva TY, Bragg O, Sirin AA. Towards ecosystem-based restoration of peatland biodiversity. Mires Peat. 2017; https://doi.org/10.19189/MaP.2013.OMB.150.

Emsens, W. J., van Diggelen, R., Aggenbach, C. J., Cajthaml, T., Frouz, J., Klimkowska, A., Kotowski, W., Kozub, L., Liczner, Y., Seeber, E., Silvennoinen, H., Tanneberger, .F., Vicena, J., Wilk, M., & Verbruggen, E. Recovery of fen peatland microbiomes and predicted functional profiles after rewetting. The ISME j. 2020 https://doi.org/10.1038/s41396-020-0639-x

Dedysh SN, Ivanova AA, Begmatov SA, Beletsky AV, Rakitin AL, Mardanov AV, Philippov DA, Ravin NV. Microbiology. 2022;91(6):662–70.

Article  CAS  Google Scholar 

Muneer MA, Hou W, Li J, Huang X, Kayani UR, Cai Y, Yang W, Wu L, Ji B, Zheng C. Soil pH: a key edaphic factor regulating distribution and functions of bacterial community along vertical soil profiles in red soil of pomelo orchard. BMC microbiol. 2022; https://doi.org/10.1186/s12866-022-02452-x.

Wang C, Zhou X, Guo D, Zhao J, Yan L, Feng G, Gao Q, Yu H, Zhao L. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann Microbiol. 2019; https://doi.org/10.1007/s13213-019-01529-9.

Mhete M, Eze PN, Rahube TO, Akinyemi FO. Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Sci Afric. 2020; https://doi.org/10.1016/j.sciaf.2019.e00246.

Wang Q, Wang C, Yu W, Turak A, Chen D, Huang Y, Ao J, Jiang Y, Huang Z. Effects of nitrogen and phosphorus inputs on soil bacterial abundance, diversity, and community composition in Chinese fir plantations. Front microbiol. 2018; https://doi.org/10.3389/fmicb.2018.01543.

Selim MSM, Abdelhamid SA, Mohamed SS. Secondary metabolites and biodiversity of actinomycetes. J Genet Eng biotechnol. 2021; https://doi.org/10.1186/s43141-021-00156-9.

Basik AA, Juboi H, Shamsul SSG, Sanglier JJ, Yeo TC. Actinomycetes isolated from wetland and hill paddy during the warm and cool Seasons in Sarawak, East Malaysia. J Microbiol Biotechnol Food Sci. 2021:774–80.

Menasria T, Monteoliva-Sánchez M, Benhadj M, Benammar L, Boukoucha M, Aguilera M. Unraveling the enzymatic and antibacterial potential of rare halophilic actinomycetes from Algerian hypersaline wetland ecosystems. J Basic Microbiol. 2022; https://doi.org/10.1590/0001-3765202120201820.

Jankoski PR, Correa APF, Brandelli A, MOTTA, A. S. Biological activity of bacteria isolated from wetland sediments collected from a conservation unit in the southern region of Brazil. Anais da Academia Brasileira de Ciências. 2021; https://doi.org/10.1590/0001-3765202120191269.

Cavalini L, Jankoski P, Correa APF, Brandelli A, MOTTA, A. S. Characterization of the antimicrobial activity produced by Bacillus sp. isolated from wetland sediment. Anais da Academia Brasileira de Ciências. 2021; https://doi.org/10.1590/0001-3765202120201820.

Benhadj M, Gacemi-Kirane D, Menasria T, Guebla K, Ahmane Z. Screening of rare actinomycetes isolated from natural wetland ecosystem (Fetzara Lake, northeastern Algeria) for hydrolytic enzymes and antimicrobial activities. J King Saud University-Sci. 2019; https://doi.org/10.1016/j.jksus.2018.03.008.

Ezeobiora CE, Igbokwe NH, Amin DH, Enwuru NV, Okpalanwa CF, Mendie UE. Uncovering the biodiversity and biosynthetic potentials of rare actinomycetes. Future J Pharmaceut Sci. 2022; https://doi.org/10.1186/s43094-022-00410-y.

Benhadj M, Gacemi-Kirane D, Toussaint M, Hotel L, Bontemps C, Duval RE, Aigle B, Leblond P. Diversity and antimicrobial activities of Streptomyces isolates from Fetzara Lake, north eastern Algeria. Annales de Biologie Clinique. 2018; https://doi.org/10.1684/abc.2017.1316.

Donald L, Pipite A, Subramani R, Owen J, Keyzers RA, Taufa T. Streptomyces: Still the biggest producer of new natural secondary metabolites, a current perspective. Microbiol Res. 2022; https://doi.org/10.3390/microbiolres13030031.

Li Y, Li Y, Li Q, Gao J, Wang J, Luo Y, Fan X, Gu P. Biosynthetic and antimicrobial potential of actinobacteria isolated from bulrush rhizospheres habitat in Zhalong Wetland China. Archiv microbiol. 2018; https://doi.org/10.1007/s00203-018-1474-6.

Lehman KM, Grabowicz M. Countering gram-negative antibiotic resistance: recent progress in disrupting the outer membrane with novel therapeutics. Antibiot. 2019; https://doi.org/10.3390/antibiotics8040163.

Imai Y, Meyer KJ, Iinishi A, Favre-Godal Q, Green R, Manuse S, Caboni M, Mori M, Niles N, Ghiglieri M, Honrao C, Ma X, Guo JJ, Makriyannis A, Linares-Otoya L, Bohringer N, Wuisan ZG, Kaur H, Wu R, et al. A new antibiotic selectively kills Gram-negative pathogens. Nat. 2019; https://doi.org/10.1038/s41586-019-1791-1.

Tiny Earth Network. Studentsourcing Drug discovery. (n.d.). https://tinyearth.wisc.edu.

Bodor A, Bounedjoum N, Vincze GE, Erdeiné Kis Á, Laczi K, Bende G, Szilágyi A, Kovács T, Perei K, Rákhely G. Challenges of unculturable bacteria: environmental perspectives. Rev Environ Sci Bio Technol. 2020; https://doi.org/10.1007/s11157-020-09522-4.

Shukla R, Lavore F, Maity S, Derks MG, Jones CR, Vermeulen BJ, Meclarová A, Morris MA, Becker LM, Wang X, Kumar R, Mederios-Silva J, van Beekveld RAM, Bonvin AMJJ, Lorent JH, Lelli M, NOwick JS, MacGillavry HD, Peoples AJ, et al. Teixobactin kills bacteria by a two-pronged attack on the cell envelope. Nat. 2022; This study describes the mode of action of an antimicrobial agent identified using new cultivation techniques

Centers for Disease Control and Prevention (n.d.). One Health. One Health | CDC

Comments (0)

No login
gif