Cross-kingdom Microbial Interactions Within the Oral Cavity and Their Implications for Oral Disease

Bacali C, Vulturar R, Buduru S, Cozma A, Fodor A, Chiș A, et al. Oral microbiome: getting to know and befriend neighbors, a biological approach. Biomedicines. 2022;10(3): 671–92. https://doi.org/10.3390/biomedicines10030671. This review details the links between the oral microbiome and oral and systemic disease, and potential strategies for manipulating this polymicrobial community.

Deo PN, Deshmukh R. Oral microbiome: unveiling the fundamentals. J Oral Maxillofac Pathol. 2019;23(1):122–8. https://doi.org/10.4103/jomfp.JOMFP_304_18.

Article  PubMed  PubMed Central  Google Scholar 

Bandara HM, Lam OL, Jin LJ, Samaranayake L. Microbial chemical signaling: a current perspective. Crit Rev Microbiol. 2012;38(3):217–49. https://doi.org/10.3109/1040841x.2011.652065.

Article  CAS  PubMed  Google Scholar 

Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017;44(Suppl 18):S12-s22. https://doi.org/10.1111/jcpe.12679.

Article  PubMed  Google Scholar 

Georges FM, Do NT, Seleem D. Oral dysbiosis and systemic diseases. Frontiers in Dental Medicine. 2022;3:995423. https://doi.org/10.3389/fdmed.2022.995423. This review discusses the association of systemic diseases with changes in oral microbiome composition and thus oral disease risk.

Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6(1):e1000713. https://doi.org/10.1371/journal.ppat.1000713.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel M. Oral cavity and Candida albicans: colonisation to the development of infection. Pathogens. 2022;11(3):335–51. https://doi.org/10.3390/pathogens11030335.

Du Q, Ren B, He J, Peng X, Guo Q, Zheng L, et al. Candida albicans promotes tooth decay by inducing oral microbial dysbiosis. ISME J. 2021;15(3):894–908. https://doi.org/10.1038/s41396-020-00823-8.

Article  CAS  PubMed  Google Scholar 

Kim HE, Liu Y, Dhall A, Bawazir M, Koo H, Hwang G. Synergism of Streptococcus mutans and Candida albicans reinforces biofilm maturation and acidogenicity in saliva: an in vitro study. Front Cell Infect Microbiol. 2020;10:623980. https://doi.org/10.3389/fcimb.2020.623980.

Article  PubMed  Google Scholar 

Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun. 2014;82(5):1968–81. https://doi.org/10.1128/iai.00087-14.

Article  PubMed  PubMed Central  Google Scholar 

Dige I, Nyvad B. Candida species in intact in vivo biofilm from carious lesions. Arch Oral Biol. 2019;101:142–6. https://doi.org/10.1016/j.archoralbio.2019.03.017.

Article  CAS  PubMed  Google Scholar 

Deng L, Li W, He Y, Wu J, Ren B, Zou L. Cross-kingdom interaction of Candida albicans and Actinomyces viscosus elevated cariogenic virulence. Arch Oral Biol. 2019;100:106–12. https://doi.org/10.1016/j.archoralbio.2019.02.008.

Article  CAS  PubMed  Google Scholar 

Shigeishi H, Nakamura M, Oka I, Su CY, Yano K, Ishikawa M, et al. The associations of periodontopathic bacteria and oral Candida with periodontal inflamed surface area in older adults receiving supportive periodontal therapy. Diagnostics 2021;11(8):1397–409. https://doi.org/10.3390/diagnostics11081397.

Bartnicka D, Karkowska-Kuleta J, Zawrotniak M, Satała D, Michalik K, Zielinska G, et al. Adhesive protein-mediated cross-talk between Candida albicans and Porphyromonas gingivalis in dual species biofilm protects the anaerobic bacterium in unfavorable oxic environment. Sci Rep. 2019;9(1):4376. https://doi.org/10.1038/s41598-019-40771-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sztukowska MN, Dutton LC, Delaney C, Ramsdale M, Ramage G, Jenkinson HF, et al. Community development between Porphyromonas gingivalis and Candida albicans mediated by InlJ and Als3. mBio. 2018;9(2):e00202–18. https://doi.org/10.1128/mBio.00202-18.

Guo Y, Wang Y, Wang Y, Jin Y, Wang C. Heme competition triggers an increase in the pathogenic potential of Porphyromonas gingivalis in Porphyromonas gingivalis-Candida albicans mixed biofilm. Front Microbiol. 2020;11:596459. https://doi.org/10.3389/fmicb.2020.596459.

Article  PubMed  PubMed Central  Google Scholar 

Bartnicka D, Gonzalez-Gonzalez M, Sykut J, Koziel J, Ciaston I, Adamowicz K, et al. Candida albicans shields the periodontal killer Porphyromonas gingivalis from recognition by the host immune system and supports the bacterial infection of gingival tissue. Int J Mol Sci. 2020;21(6). https://doi.org/10.3390/ijms21061984.

Oka I, Shigeishi H, Ohta K. Co-infection of oral Candida albicans and Porphyromonas gingivalis is associated with active periodontitis in middle-aged and older Japanese people. Medicina. 2022;58(6):723–32. https://doi.org/10.3390/medicina58060723.

Cavalcanti IM, Nobbs AH, Ricomini-Filho AP, Jenkinson HF, Del Bel Cury AA. Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material. Pathog Dis. 2016;74(3):ftw002. https://doi.org/10.1093/femspd/ftw002.

Fujinami W, Nishikawa K, Ozawa S, Hasegawa Y, Takebe J. Correlation between the relative abundance of oral bacteria and Candida albicans in denture and dental plaques. J Oral Biosci. 2021;63(2):175–83. https://doi.org/10.1016/j.job.2021.02.003.

Article  CAS  PubMed  Google Scholar 

Alnuaimi AD, Ramdzan AN, Wiesenfeld D, O’Brien-Simpson NM, Kolev SD, Reynolds EC, et al. Candida virulence and ethanol-derived acetaldehyde production in oral cancer and non-cancer subjects. Oral Dis. 2016;22(8):805–14. https://doi.org/10.1111/odi.12565.

Article  CAS  PubMed  Google Scholar 

Kaźmierczak-Siedlecka K, Dvořák A, Folwarski M, Daca A, Przewłócka K, Makarewicz W. Fungal gut microbiota dysbiosis and its role in colorectal, oral, and pancreatic carcinogenesis. Cancers. 2020;12(5):1326–38. https://doi.org/10.3390/cancers12051326.

Arzmi MH, Cirillo N, Lenzo JC, Catmull DV, O’Brien-Simpson N, Reynolds EC, et al. Monospecies and polymicrobial biofilms differentially regulate the phenotype of genotype-specific oral cancer cells. Carcinogenesis. 2019;40(1):184–93. https://doi.org/10.1093/carcin/bgy137.

Article  CAS  PubMed  Google Scholar 

Amaya Arbeláez MI, de Paula ESACA, Navegante G, Valente V, Barbugli PA, Vergani CE. Proto-oncogenes and cell cycle gene expression in normal and neoplastic oral epithelial cells stimulated with soluble factors from single and dual biofilms of Candida albicans and Staphylococcus aureus. Front Cell Infect Microbiol. 2021;11:627043. https://doi.org/10.3389/fcimb.2021.627043.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertolini M, Ranjan A, Thompson A, Diaz PI, Sobue T, Maas K, et al. Candida albicans induces mucosal bacterial dysbiosis that promotes invasive infection. PLoS Pathog. 2019;15(4):e1007717. https://doi.org/10.1371/journal.ppat.1007717.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vyhnalova T, Danek Z, Gachova D, Linhartova PB. The role of the oral microbiota in the etiopathogenesis of oral squamous cell carcinoma. Microorganisms. 2021;9(8):1549–71. https://doi.org/10.3390/microorganisms9081549. This review discusses current understanding of the association of the oral microbiota with oral squamous carcinoma.

Boisen G, Davies JR, Neilands J. Acid tolerance in early colonizers of oral biofilms. BMC Microbiol. 2021;21(1):45. https://doi.org/10.1186/s12866-021-02089-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Willaert RG. Adhesins of yeasts: protein structure and interactions. J Fungi. 2018;4(4):119–46. https://doi.org/10.3390/jof4040119.

Kim D, Koo H. Spatial design of polymicrobial oral biofilm in its native disease state. J Dent Res. 2020;99(6):597–603. https://doi.org/10.1177/0022034520909313. This paper uses high resolution microscopy to show that members of the dental plaque biofilm organise into defined, three-dimensionalstructures.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nobbs AH, Jenkinson HF. Interkingdom networking within the oral microbiome. Microbes Infect. 2015;17(7):484–92. https://doi.org/10.1016/j.micinf.2015.03.008.

Article  PubMed  PubMed Central  Google Scholar 

Zijnge V, van Leeuwen MB, Degener JE, Abbas F, Thurnheer T, Gmür R, et al. Oral biofilm architecture on natural teeth. PLoS One. 2010;5(2):e9321. https://doi.org/10.1371/journal.pone.0009321.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du Q, Ren B, Zhou X, Zhang L, Xu X. Cross-kingdom interaction between Candida albicans and oral bacteria. Front Microbiol. 2022;13:911623. https://doi.org/10.3389/fmicb.2022.911623.

Article  PubMed  PubMed Central  Google Scholar 

Silverman RJ, Nobbs AH, Vickerman MM, Barbour ME, Jenkinson HF. Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. Infect Immun. 2010;78(11):4644–52. https://doi.org/10.1128/iai.00685-10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koo H, Andes DR, Krysan DJ. Candida-streptococcal interactions in biofilm-associated oral diseases. PLoS Pathog. 2018;14(12):e1007342. https://doi.org/10.1371/journal.ppat.1007342.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu H, Sobue T, Bertolini M, Thompson A, Dongari-Bagtzoglou A. Streptococcus oralis and Candida albicans synergistically activate μ-calpain to degrade E-cadherin from oral epithelial junctions. J Infect Dis. 2016;214(6):925–34. https://doi.org/10.1093/infdis/jiw201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tamai R, Sugamata M, Kiyoura Y. Candida albicans enhances invasion of human gingival epithelial cells and gingival fibroblasts by Porphyromonas gingivalis. Microb Pathog. 2011;51(4):250–4. https://doi.org/10.1016/j.micpath.2011.06.009.

Article  CAS  PubMed  Google Scholar 

Siqueira JF Jr, Rôças IN. Diversity of endodontic microbiota revisited. J Dent Res. 2009;88(11):969–81. https://doi.org/10.1177/0022034509346549.

Article  PubMed  Google Scholar 

Du Q, Yuan S, Zhao S, Fu D, Chen Y, Zhou Y, et al. Coexistence of Candida albicans and Enterococcus faecalis increases biofilm virulence and periapical lesions in rats. Biofouling. 2021;37(9–10):964–74. https://doi.org/10.1080/08927014.2021.1993836.

Article  CAS  PubMed  Google Scholar 

Ren Z, Jeckel H, Simon-Soro A, Xiang Z, Liu Y, Cavalcanti IM, et al. Interkingdom assemblages in human saliva display group-level surface mobility and disease-promoting emergent functions. Proc Natl Acad Sci U S A. 2022;119(41):e2209699119. https://doi.org/10.1073/pnas.2209699119. This paper uses real-time microscopy and computational analysis to show that C. albicans and S. mutans form biofilm super-structures with enhanced mobility and pathogenicity.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jack AA, Daniels DE, Jepson MA, Vickerman MM, Lamont RJ, Jenkinson HF, et al. Streptococcus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans. Microbiology. 2015;161:411–21. https://doi.org/10.1099/mic.0.000010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jarosz LM, Deng DM, van der Mei HC, Crielaard W, Krom BP. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. Eukaryot Cell. 2009;8(11):1658–64. https://doi.org/10.1128/ec.00070-09.

Article 

留言 (0)

沒有登入
gif