The Role of Host and Fungal Factors in the Commensal-to-Pathogen Transition of Candida albicans

Robinson HA, Pinharanda A, Bensasson D. Summer temperature can predict the distribution of wild yeast populations. Ecol Evol. 2016;6(4):1236–50. https://doi.org/10.1002/ece3.1919.

Article  PubMed  PubMed Central  Google Scholar 

Kondori N, Nowrouzian F, Ajdari M, Hesselmar B, Saalman R, Wold AE, et al. Candida species as commensal gut colonizers: a study of 133 longitudinally followed Swedish infants. Med Mycol. 2020;58(4):485–92. https://doi.org/10.1093/mmy/myz091.

Article  CAS  PubMed  Google Scholar 

Ward TL, Dominguez-Bello MG, Heisel T, Al-Ghalith G, Knights D, Gale CA. Development of the human mycobiome over the first month of life and across body sites. mSystems. 2018;3(3):e00140. https://doi.org/10.1128/mSystems.00140-17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raimondi S, Amaretti A, Gozzoli C, Simone M, Righini L, Candeliere F, et al. Longitudinal survey of fungi in the human gut: ITS profiling, phenotyping, and colonization. Front Microbiol. 2019;10:1575. https://doi.org/10.3389/fmicb.2019.01575.

Article  PubMed  PubMed Central  Google Scholar 

Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome. 2017;5(1):153. https://doi.org/10.1186/s40168-017-0373-4.

Article  PubMed  PubMed Central  Google Scholar 

Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6(1):e1000713. https://doi.org/10.1371/journal.ppat.1000713.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown SE, Schwartz JA, Robinson CK, De OH, Bradford LL, He X, et al. The vaginal microbiota and behavioral factors associated with genital Candida albicans detection in reproductive-age women. Sex Transm Dis. 2019;46(11):753–8. https://doi.org/10.1097/olq.0000000000001066.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Payne MS, Cullinane M, Garland SM, Tabrizi SN, Donath SM, Bennett CM, et al. Detection of Candida spp. in the vagina of a cohort of nulliparous pregnant women by culture and molecular methods: is there an association between maternal vaginal and infant oral colonisation? Aust N Z J Obstet Gynaecol. 2016;56(2):179–84. https://doi.org/10.1111/ajo.12409.

Article  PubMed  Google Scholar 

Tortelli BA, Lewis WG, Allsworth JE, Member-Meneh N, Foster LR, Reno HE, et al. Associations between the vaginal microbiome and Candida colonization in women of reproductive age. Am J Obstet Gynecol. 2020;222(5):471.e1–9. https://doi.org/10.1016/j.ajog.2019.10.008.

Article  CAS  PubMed  Google Scholar 

Drell T, Lillsaar T, Tummeleht L, Simm J, Aaspollu A, Vain E, et al. Characterization of the vaginal micro- and mycobiome in asymptomatic reproductive-age Estonian women. PLoS One. 2013;8(1):e54379. https://doi.org/10.1371/journal.pone.0054379.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the management of Candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1–50. https://doi.org/10.1093/cid/civ933.

Article  PubMed  Google Scholar 

Lalla RV, Patton LL, Dongari-Bagtzoglou A. Oral candidiasis: pathogenesis, clinical presentation, diagnosis and treatment strategies. J Calif Dent Assoc. 2013;41(4):263–8.

Article  PubMed  Google Scholar 

Miranda LN, van der Heijden IM, Costa SF, Sousa AP, Sienra RA, Gobara S, et al. Candida colonisation as a source for candidaemia. J Hosp Infect. 2009;72(1):9–16.

Article  CAS  PubMed  Google Scholar 

Zhai B, Ola M, Rolling T, Tosini NL, Joshowitz S, Littmann ER, et al. High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat Med. 2020;26(1):59–64. https://doi.org/10.1038/s41591-019-0709-7. This study demonstrated that candidiasis is caused by strains originating from the gut, and that expansion of the fungal population precedes dissemination in human patients.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hube B. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol. 2004;7(4):336–41.

Article  CAS  PubMed  Google Scholar 

Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020;69(12):2232–43. https://doi.org/10.1136/gutjnl-2020-322260.

Article  CAS  PubMed  Google Scholar 

Böhm L, Torsin S, Tint SH, Eckstein MT, Ludwig T, Perez JC. The yeast form of the fungus Candida albicans promotes persistence in the gut of gnotobiotic mice. PLoS Pathog. 2017;13(10):e1006699. https://doi.org/10.1371/journal.ppat.1006699. This study describes fungal burden and morphology in germ-free mice colonized with C. albicans.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salvatori O, Puri S, Tati S, Edgerton M. Innate immunity and saliva in Candida albicans-mediated oral diseases. J Dent Res. 2016;95(4):365–71. https://doi.org/10.1177/0022034515625222.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 2007;5(3):e64.

Article  PubMed  PubMed Central  Google Scholar 

Ponniah G, Rollenhagen C, Bahn YS, Staab JF, Sundstrom P. State of differentiation defines buccal epithelial cell affinity for cross-linking to Candida albicans Hwp1. J Oral Pathol Med. 2007;36(8):456–67.

Article  CAS  PubMed  Google Scholar 

Fu Y, Luo G, Spellberg BJ, Edwards JE Jr, Ibrahim AS. Gene overexpression/suppression analysis of candidate virulence factors of Candida albicans. Eukaryotic cell. 2008;7(3):483–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu W, Filler SG. Interactions of Candida albicans with epithelial cells. Cell Microbiol. 2010;12:273–82.

Article  CAS  PubMed  Google Scholar 

Park H, Myers CL, Sheppard DC, Phan QT, Sanchez AA, et al. Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell Microbiol. 2005;7(4):499–510.

Article  CAS  PubMed  Google Scholar 

Wächtler B, Citiulo F, Jablonowski N, Forster S, Dalle F, Schaller M, et al. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS One. 2012;7(5):e36952. https://doi.org/10.1371/journal.pone.0036952.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phan QT, Fratti RA, Prasadarao NV, Edwards JE Jr, Filler SG. N-cadherin mediates endocytosis of Candida albicans by endothelial cells. J Biol Chem. 2005;280(11):10455–61.

Article  CAS  PubMed  Google Scholar 

Sun JN, Solis NV, Phan QT, Bajwa JS, Kashleva H, Thompson A, et al. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog. 2010;6(11):e1001181. https://doi.org/10.1371/journal.ppat.1001181.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu W, Phan QT, Boontheung P, Solis NV, Loo JA, Filler SG. EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by Candida albicans during oropharyngeal infection. Proc Natl Acad Sci U S A. 2012;109(35):14194–9. https://doi.org/10.1073/pnas.1117676109.

Article  PubMed  PubMed Central  Google Scholar 

Dalle F, Wachtler B, Coralie L, Holland G, Bannert N, Wilson D, et al. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. 2009;12(2):248–71.

Article  PubMed  Google Scholar 

Villar CC, Kashleva H, Nobile CJ, Mitchell AP, Dongari-Bagtzoglou A. Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect Immun. 2007;75(5):2126–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wächtler B, Wilson D, Haedicke K, Dalle F, Hube B. From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One. 2011;6(2):e17046. https://doi.org/10.1371/journal.pone.0017046.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sundstrom P. Adhesion in Candida spp. Cell Microbiol. 2002;4(8):461–9.

Article  CAS  PubMed  Google Scholar 

Williams TJ, Gonzales-Huerta LE, Armstrong-James D. Fungal-induced programmed cell death. J Fungi. 2021;7(3):231. https://doi.org/10.3390/jof7030231.

Article  CAS  Google Scholar 

Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532(7597):64–8. https://doi.org/10.1038/nature17625. This study describes the discovery of Candidalysin as a major virulence factor of C. albicans.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif