Modulation of human endogenous retroviruses and cytokines expression in peripheral blood mononuclear cells from autistic children and their parents

Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J. Autism spectrum disorder. Lancet. 2018. https://doi.org/10.1016/S0140-6736(18)31129-2.

Article  PubMed  PubMed Central  Google Scholar 

American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: VA, American Psychiatric Publishing; 2013.

Book  Google Scholar 

Emberti Gialloreti L, Curatolo P. Autism spectrum disorder: why do we know so little? Front Neurol. 2018. https://doi.org/10.3389/fneur.2018.00670.

Article  PubMed  PubMed Central  Google Scholar 

Sandin S, Lichtenstein P, Kuja-Halkola R, Hultman C, Larsson H, Reichenberg A. The heritability of autism spectrum disorder. JAMA. 2017. https://doi.org/10.1001/jama.2017.12141.

Article  PubMed  PubMed Central  Google Scholar 

Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, Pallesen J, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019. https://doi.org/10.1038/s41588-019-0344-8.

Article  PubMed  PubMed Central  Google Scholar 

Rosenberg RE, Law JK, Yenokyan G, McGready J, Kaufmann WE, Law PA. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch Pediatr Adolesc Med. 2009. https://doi.org/10.1001/archpediatrics.2009.98.

Article  PubMed  Google Scholar 

Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011. https://doi.org/10.1001/archgenpsychiatry.2011.76.

Article  PubMed  PubMed Central  Google Scholar 

Lee GA, Lin YK, Lai JH, Lo YC, Yang YSH, Ye SY, et al. Maternal immune activation causes social behavior deficits and hypomyelination in male rat offspring with an autism-like microbiota profile. Brain Sci. 2021. https://doi.org/10.3390/brainsci11081085.

Article  PubMed  PubMed Central  Google Scholar 

Abuaish S, Al-Otaibi NM, Abujamel TS, Alzahrani SA, Alotaibi SM, AlShawakir YA, et al. Fecal transplant and bifidobacterium treatments modulate gut clostridium bacteria and rescue social impairment and hippocampal BDNF expression in a rodent model of autism. Brain Sci. 2021. https://doi.org/10.3390/brainsci11081038.

Article  PubMed  PubMed Central  Google Scholar 

Heyer DB, Meredith RM. Environmental toxicology: sensitive periods of development and neurodevelopmental disorders. Neurotoxicology. 2017. https://doi.org/10.1016/j.neuro.2016.10.017.

Article  PubMed  Google Scholar 

Estes ML, McAllister AK. Maternal immune activation: implications for neuropsychiatric disorders. Science. 2016. https://doi.org/10.1126/science.aag3194.

Article  PubMed  PubMed Central  Google Scholar 

Balestrieri E, Matteucci C, Cipriani C, Grelli S, Ricceri L, Calamandrei G, et al. Endogenous retroviruses activity as a molecular signature of neurodevelopmental disorders. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20236050.

Article  PubMed  PubMed Central  Google Scholar 

Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, et al. Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci U S A. 2004. https://doi.org/10.1073/pnas.0307800101.

Article  PubMed  PubMed Central  Google Scholar 

Bannert N, Kurth R. The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet. 2006. https://doi.org/10.1146/annurev.genom.7.080505.115700.

Article  PubMed  Google Scholar 

Bock M, Stoye JP. Endogenous retroviruses and the human germline. Curr Opin Genet Dev. 2000. https://doi.org/10.1016/s0959-437x(00)00138-6.

Article  PubMed  Google Scholar 

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001. https://doi.org/10.1038/35057062.

Article  PubMed  Google Scholar 

Feschotte C, Gilbert C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet. 2012. https://doi.org/10.1038/nrg3199.

Article  PubMed  Google Scholar 

Dewannieux M, Heidmann T. Endogenous retroviruses: acquisition, amplification and taming of genome invaders. Curr Opin Virol. 2013. https://doi.org/10.1016/j.coviro.2013.08.005.

Article  PubMed  Google Scholar 

Tristem M. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol. 2000. https://doi.org/10.1128/jvi.74.8.3715-3730.2000.

Article  PubMed  PubMed Central  Google Scholar 

Bénit L, Dessen P, Heidmann T. Identification, phylogeny, and evolution of retroviral elements based on their envelope genes. J Virol. 2001. https://doi.org/10.1128/JVI.75.23.11709-11719.2001.

Article  PubMed  PubMed Central  Google Scholar 

Thomas J, Perron H, Feschotte C. Variation in proviral content among human genomes mediated by LTR recombination. Mob DNA. 2018. https://doi.org/10.1186/s13100-018-0142-3.

Article  PubMed  PubMed Central  Google Scholar 

Belshaw R, Katzourakis A, Paces J, Burt A, Tristem M. High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection. Mol Biol Evol. 2005. https://doi.org/10.1093/molbev/msi088.

Article  PubMed  Google Scholar 

Wildschutte J, Williams Z, Montesion M, Subramanian R, Kidd J, Coffin J. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc Natl Acad Sci. 2016. https://doi.org/10.1073/pnas.1602336113.

Article  PubMed  PubMed Central  Google Scholar 

Frank JA, Feschotte C. Co-option of endogenous viral sequences for host cell function. Curr Opin Virol. 2017. https://doi.org/10.1016/j.coviro.2017.07.021.

Article  PubMed  PubMed Central  Google Scholar 

Matteucci C, Balestrieri E, Argaw-Denboba A, Sinibaldi-Vallebona P. Human endogenous retroviruses role in cancer cell stemness. Semin Cancer Biol. 2018. https://doi.org/10.1016/j.semcancer.2018.10.001.

Article  PubMed  Google Scholar 

Küry P, Nath A, Créange A, Dolei A, Marche P, Gold J, et al. Human endogenous retroviruses in neurological diseases. Trends Mol Med. 2018. https://doi.org/10.1016/j.molmed.2018.02.007.

Article  PubMed  PubMed Central  Google Scholar 

Leboyer M, Tamouza R, Charron D, Faucard R, Perron H. Human Endogenous retrovirus type W (HERV-W) in schizophrenia: a new avenue of research at the gene-environment interface. World J Biol Psychiatry. 2013. https://doi.org/10.3109/15622975.2010.601760.

Article  PubMed  Google Scholar 

Levet S, Charvet B, Bertin A, Deschaumes A, Perron H, Hober D. Human endogenous retroviruses and type 1 diabetes. Curr Diab Rep. 2019. https://doi.org/10.1007/s11892-019-1256-9.

Article  PubMed  PubMed Central  Google Scholar 

Balestrieri E, Arpino C, Matteucci C, Sorrentino R, Pica F, Alessandrelli R, et al. HERVs expression in autism spectrum disorders. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0048831.

Article  PubMed  PubMed Central  Google Scholar 

Balestrieri E, Pitzianti M, Matteucci C, D’Agati E, Sorrentino R, Baratta A, et al. Human endogenous retroviruses and ADHD. World J Biol Psychiatry. 2014. https://doi.org/10.3109/15622975.2013.862345.

Article  PubMed  Google Scholar 

Heidmann O, Béguin A, Paternina J, Berthier R, Deloger M, Bawa O, et al. HEMO, an ancestral endogenous retroviral envelope protein shed in the blood of pregnant women and expressed in pluripotent stem cells and tumors. Proc Natl Acad Sci U S A. 2017. https://doi.org/10.1073/pnas.1702204114.

Article  PubMed  PubMed Central  Google Scholar 

Balestrieri E, Cipriani C, Matteucci C, Benvenuto A, Coniglio A, Argaw-Denboba A, et al. Children with autism spectrum disorder and their mothers share abnormal expression of selected endogenous retroviruses families and cytokines. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.02244.

Article  PubMed  PubMed Central  Google Scholar 

Cipriani C, Ricceri L, Matteucci C, De Felice A, Tartaglione AM, Argaw-Denboba A, et al. High expression of endogenous retroviruses from intrauterine life to adulthood in two mouse models of autism spectrum disorders. Sci Rep. 2018. https://doi.org/10.1038/s41598-017-19035-w.

Article  PubMed  PubMed Central  Google Scholar 

Tartaglione AM, Cipriani C, Chiarotti F, Perrone B, Balestrieri E, Matteucci C, et al. early behavioral alterations and increased expression of endogenous retroviruses are inherited across generations in mice prenatally exposed to valproic acid. Mol Neurobiol. 2019. https://doi.org/10.1007/s12035-018-1328-x.

Article  PubMed  Google Scholar 

Grzadzinski R, Amso D, Landa R, Watson L, Guralnick M, Zwaigenbaum L, et al. Pre-symptomatic intervention for autism spectrum disorder (ASD): defining a research agenda. J Neurodevelop Disord. 2021. https://doi.org/10.1186/s11689-021-09393-y.

Article  Google Scholar 

Perron H, Lang A. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin Rev Allergy Immunol. 2010;39(51):61. https://doi.org/10.1007/s12016-009-8170-x.

Article  CAS  Google Scholar 

Gropman AL, Batshaw ML. Epigenetics, copy number variation, and other molecular mechanisms underlying neurodevelopmental disabilities: new insights and diagnostic approaches. J Dev Behav Pediatr. 2010. https://doi.org/10.1097/DBP.0b013e3181ee384e.

Article  PubMed  Google Scholar 

LaSalle JM. Epigenomic strategies at the interface of genetic and environmental risk factors for autism. J Hum Genet. 2013. https://doi.org/10.1038/jhg.2013.49.

Comments (0)

No login
gif