Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J. Autism spectrum disorder. Lancet. 2018. https://doi.org/10.1016/S0140-6736(18)31129-2.
Article PubMed PubMed Central Google Scholar
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: VA, American Psychiatric Publishing; 2013.
Emberti Gialloreti L, Curatolo P. Autism spectrum disorder: why do we know so little? Front Neurol. 2018. https://doi.org/10.3389/fneur.2018.00670.
Article PubMed PubMed Central Google Scholar
Sandin S, Lichtenstein P, Kuja-Halkola R, Hultman C, Larsson H, Reichenberg A. The heritability of autism spectrum disorder. JAMA. 2017. https://doi.org/10.1001/jama.2017.12141.
Article PubMed PubMed Central Google Scholar
Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, Pallesen J, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019. https://doi.org/10.1038/s41588-019-0344-8.
Article PubMed PubMed Central Google Scholar
Rosenberg RE, Law JK, Yenokyan G, McGready J, Kaufmann WE, Law PA. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch Pediatr Adolesc Med. 2009. https://doi.org/10.1001/archpediatrics.2009.98.
Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011. https://doi.org/10.1001/archgenpsychiatry.2011.76.
Article PubMed PubMed Central Google Scholar
Lee GA, Lin YK, Lai JH, Lo YC, Yang YSH, Ye SY, et al. Maternal immune activation causes social behavior deficits and hypomyelination in male rat offspring with an autism-like microbiota profile. Brain Sci. 2021. https://doi.org/10.3390/brainsci11081085.
Article PubMed PubMed Central Google Scholar
Abuaish S, Al-Otaibi NM, Abujamel TS, Alzahrani SA, Alotaibi SM, AlShawakir YA, et al. Fecal transplant and bifidobacterium treatments modulate gut clostridium bacteria and rescue social impairment and hippocampal BDNF expression in a rodent model of autism. Brain Sci. 2021. https://doi.org/10.3390/brainsci11081038.
Article PubMed PubMed Central Google Scholar
Heyer DB, Meredith RM. Environmental toxicology: sensitive periods of development and neurodevelopmental disorders. Neurotoxicology. 2017. https://doi.org/10.1016/j.neuro.2016.10.017.
Estes ML, McAllister AK. Maternal immune activation: implications for neuropsychiatric disorders. Science. 2016. https://doi.org/10.1126/science.aag3194.
Article PubMed PubMed Central Google Scholar
Balestrieri E, Matteucci C, Cipriani C, Grelli S, Ricceri L, Calamandrei G, et al. Endogenous retroviruses activity as a molecular signature of neurodevelopmental disorders. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20236050.
Article PubMed PubMed Central Google Scholar
Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, et al. Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci U S A. 2004. https://doi.org/10.1073/pnas.0307800101.
Article PubMed PubMed Central Google Scholar
Bannert N, Kurth R. The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet. 2006. https://doi.org/10.1146/annurev.genom.7.080505.115700.
Bock M, Stoye JP. Endogenous retroviruses and the human germline. Curr Opin Genet Dev. 2000. https://doi.org/10.1016/s0959-437x(00)00138-6.
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001. https://doi.org/10.1038/35057062.
Feschotte C, Gilbert C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet. 2012. https://doi.org/10.1038/nrg3199.
Dewannieux M, Heidmann T. Endogenous retroviruses: acquisition, amplification and taming of genome invaders. Curr Opin Virol. 2013. https://doi.org/10.1016/j.coviro.2013.08.005.
Tristem M. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol. 2000. https://doi.org/10.1128/jvi.74.8.3715-3730.2000.
Article PubMed PubMed Central Google Scholar
Bénit L, Dessen P, Heidmann T. Identification, phylogeny, and evolution of retroviral elements based on their envelope genes. J Virol. 2001. https://doi.org/10.1128/JVI.75.23.11709-11719.2001.
Article PubMed PubMed Central Google Scholar
Thomas J, Perron H, Feschotte C. Variation in proviral content among human genomes mediated by LTR recombination. Mob DNA. 2018. https://doi.org/10.1186/s13100-018-0142-3.
Article PubMed PubMed Central Google Scholar
Belshaw R, Katzourakis A, Paces J, Burt A, Tristem M. High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection. Mol Biol Evol. 2005. https://doi.org/10.1093/molbev/msi088.
Wildschutte J, Williams Z, Montesion M, Subramanian R, Kidd J, Coffin J. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc Natl Acad Sci. 2016. https://doi.org/10.1073/pnas.1602336113.
Article PubMed PubMed Central Google Scholar
Frank JA, Feschotte C. Co-option of endogenous viral sequences for host cell function. Curr Opin Virol. 2017. https://doi.org/10.1016/j.coviro.2017.07.021.
Article PubMed PubMed Central Google Scholar
Matteucci C, Balestrieri E, Argaw-Denboba A, Sinibaldi-Vallebona P. Human endogenous retroviruses role in cancer cell stemness. Semin Cancer Biol. 2018. https://doi.org/10.1016/j.semcancer.2018.10.001.
Küry P, Nath A, Créange A, Dolei A, Marche P, Gold J, et al. Human endogenous retroviruses in neurological diseases. Trends Mol Med. 2018. https://doi.org/10.1016/j.molmed.2018.02.007.
Article PubMed PubMed Central Google Scholar
Leboyer M, Tamouza R, Charron D, Faucard R, Perron H. Human Endogenous retrovirus type W (HERV-W) in schizophrenia: a new avenue of research at the gene-environment interface. World J Biol Psychiatry. 2013. https://doi.org/10.3109/15622975.2010.601760.
Levet S, Charvet B, Bertin A, Deschaumes A, Perron H, Hober D. Human endogenous retroviruses and type 1 diabetes. Curr Diab Rep. 2019. https://doi.org/10.1007/s11892-019-1256-9.
Article PubMed PubMed Central Google Scholar
Balestrieri E, Arpino C, Matteucci C, Sorrentino R, Pica F, Alessandrelli R, et al. HERVs expression in autism spectrum disorders. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0048831.
Article PubMed PubMed Central Google Scholar
Balestrieri E, Pitzianti M, Matteucci C, D’Agati E, Sorrentino R, Baratta A, et al. Human endogenous retroviruses and ADHD. World J Biol Psychiatry. 2014. https://doi.org/10.3109/15622975.2013.862345.
Heidmann O, Béguin A, Paternina J, Berthier R, Deloger M, Bawa O, et al. HEMO, an ancestral endogenous retroviral envelope protein shed in the blood of pregnant women and expressed in pluripotent stem cells and tumors. Proc Natl Acad Sci U S A. 2017. https://doi.org/10.1073/pnas.1702204114.
Article PubMed PubMed Central Google Scholar
Balestrieri E, Cipriani C, Matteucci C, Benvenuto A, Coniglio A, Argaw-Denboba A, et al. Children with autism spectrum disorder and their mothers share abnormal expression of selected endogenous retroviruses families and cytokines. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.02244.
Article PubMed PubMed Central Google Scholar
Cipriani C, Ricceri L, Matteucci C, De Felice A, Tartaglione AM, Argaw-Denboba A, et al. High expression of endogenous retroviruses from intrauterine life to adulthood in two mouse models of autism spectrum disorders. Sci Rep. 2018. https://doi.org/10.1038/s41598-017-19035-w.
Article PubMed PubMed Central Google Scholar
Tartaglione AM, Cipriani C, Chiarotti F, Perrone B, Balestrieri E, Matteucci C, et al. early behavioral alterations and increased expression of endogenous retroviruses are inherited across generations in mice prenatally exposed to valproic acid. Mol Neurobiol. 2019. https://doi.org/10.1007/s12035-018-1328-x.
Grzadzinski R, Amso D, Landa R, Watson L, Guralnick M, Zwaigenbaum L, et al. Pre-symptomatic intervention for autism spectrum disorder (ASD): defining a research agenda. J Neurodevelop Disord. 2021. https://doi.org/10.1186/s11689-021-09393-y.
Perron H, Lang A. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin Rev Allergy Immunol. 2010;39(51):61. https://doi.org/10.1007/s12016-009-8170-x.
Gropman AL, Batshaw ML. Epigenetics, copy number variation, and other molecular mechanisms underlying neurodevelopmental disabilities: new insights and diagnostic approaches. J Dev Behav Pediatr. 2010. https://doi.org/10.1097/DBP.0b013e3181ee384e.
LaSalle JM. Epigenomic strategies at the interface of genetic and environmental risk factors for autism. J Hum Genet. 2013. https://doi.org/10.1038/jhg.2013.49.
Comments (0)