Richman DD, Wrin T, Little SJ, Petropoulos CJ. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci U S A. 2003;100(7):4144–9. https://doi.org/10.1073/pnas.0630530100. (Epub 2003/03/20).
Article CAS PubMed PubMed Central Google Scholar
Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, et al. Antibody neutralization and escape by HIV-1. Nature. 2003;422(6929):307–12. https://doi.org/10.1038/nature01470. (Epub 2003/03/21).
Article CAS PubMed Google Scholar
Saez-Cirion A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 2013;9(3): e1003211. https://doi.org/10.1371/journal.ppat.1003211. (Epub 2013/03/22).
Article CAS PubMed PubMed Central Google Scholar
Hocqueloux L, Prazuck T, Avettand-Fenoel V, Lafeuillade A, Cardon B, Viard JP, Rouzioux C. Long-term immunovirologic control following antiretroviral therapy interruption in patients treated at the time of primary HIV-1 infection. AIDS. 2010;24(10):1598–601. https://doi.org/10.1097/qad.0b013e32833b61ba. (Epub 2010/06/16).
Davey RT Jr, Bhat N, Yoder C, Chun TW, Metcalf JA, Dewar R, et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci U S A. 1999;96(26):15109–14. https://doi.org/10.1073/pnas.96.26.15109. (Epub 1999/12/28).
Article CAS PubMed PubMed Central Google Scholar
Pannus P, Rutsaert S, De Wit S, Allard SD, Vanham G, Cole B, et al. Rapid viral rebound after analytical treatment interruption in patients with very small HIV reservoir and minimal on-going viral transcription. J Int AIDS Soc. 2020;23(2): e25453. https://doi.org/10.1002/jia2.25453. (Epub 2020/02/29).
Article CAS PubMed PubMed Central Google Scholar
Colby DJ, Trautmann L, Pinyakorn S, Leyre L, Pagliuzza A, Kroon E, et al. Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nat Med. 2018;24(7):923–6. https://doi.org/10.1038/s41591-018-0026-6. (Epub 2018/06/13).
Article CAS PubMed PubMed Central Google Scholar
Klatt NR, Chomont N, Douek DC, Deeks SG. Immune activation and HIV persistence: implications for curative approaches to HIV infection. Immunol Rev. 2013;254(1):326–42. https://doi.org/10.1111/imr.12065. (Epub 2013/06/19).
Article CAS PubMed PubMed Central Google Scholar
Veenhuis RT, Abreu CM, Shirk EN, Gama L, Clements JE. HIV replication and latency in monocytes and macrophages. Semin Immunol. 2021;51: 101472. https://doi.org/10.1016/j.smim.2021.101472. (Epub 20210227).
Article CAS PubMed PubMed Central Google Scholar
Honeycutt JB, Wahl A, Baker C, Spagnuolo RA, Foster J, Zakharova O, et al. Macrophages sustain HIV replication in vivo independently of T cells. J Clin Investig. 2016;126(4):1353–66. https://doi.org/10.1172/jci84456. (Epub 20160307).
Article PubMed PubMed Central Google Scholar
McManus WR, Bale MJ, Spindler J, Wiegand A, Musick A, Patro SC, et al. HIV-1 in lymph nodes is maintained by cellular proliferation during antiretroviral therapy. J Clin Investig. 2019;129(11):4629–42. https://doi.org/10.1172/jci126714. (Epub 20190730).
Article CAS PubMed PubMed Central Google Scholar
Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med. 2004;200(6):749–59. https://doi.org/10.1084/jem.20040874. (Epub 20040913).
Article CAS PubMed PubMed Central Google Scholar
Moron-Lopez S, Xie G, Kim P, Siegel DA, Lee S, Wong JK, et al. Tissue-specific differences in HIV DNA levels and mechanisms that govern HIV transcription in blood, gut, genital tract and liver in ART-treated women. J Int AIDS Soc. 2021;24(7): e25738. https://doi.org/10.1002/jia2.25738.
Article CAS PubMed PubMed Central Google Scholar
Carter CC, Onafuwa-Nuga A, McNamara LA, Riddell JT, Bixby D, Savona MR, Collins KL. HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs. Nat Med. 2010;16(4):446–51. https://doi.org/10.1038/nm.2109. (Epub 2010/03/09).
Article CAS PubMed PubMed Central Google Scholar
Chavez L, Calvanese V, Verdin E. HIV latency is established directly and early in both resting and activated primary CD4 T cells. PLoS Pathog. 2015;11(6):e1004955. https://doi.org/10.1371/journal.ppat.1004955. (Epub 2015/06/13).
Article CAS PubMed PubMed Central Google Scholar
Agosto LM, Herring MB, Mothes W, Henderson AJ. HIV-1-infected CD4+ T cells facilitate latent infection of resting CD4+ T cells through cell-cell contact. Cell Rep. 2018;24(8):2088–100. https://doi.org/10.1016/j.celrep.2018.07.079. (Epub 2018/08/23).
Article CAS PubMed Google Scholar
Wietgrefe SW, Anderson J, Duan L, Southern PJ, Zuck P, Wu G, et al. Initial productive and latent HIV infections originate in vivo by infection of resting T cells. J Clin Invest. 2023. https://doi.org/10.1172/JCI171501. (Epub 2023/09/21).
Article PubMed PubMed Central Google Scholar
Murray AJ, Kwon KJ, Farber DL, Siliciano RF. The latent reservoir for HIV-1: how immunologic memory and clonal expansion contribute to HIV-1 persistence. J Immunol. 2016;197(2):407–17. https://doi.org/10.4049/jimmunol.1600343. (Epub 2016/07/07).
Article CAS PubMed Google Scholar
Sengupta S, Siliciano RF. Targeting the latent reservoir for HIV-1. Immunity. 2018;48(5):872–95. https://doi.org/10.1016/j.immuni.2018.04.030. (Epub 2018/05/17).
Article CAS PubMed PubMed Central Google Scholar
Shan L, Deng K, Gao H, Xing S, Capoferri AA, Durand CM, et al. Transcriptional reprogramming during effector-to-memory transition renders CD4(+) T cells permissive for latent HIV-1 infection. Immunity. 2017;47(4):766-75 e3. https://doi.org/10.1016/j.immuni.2017.09.014. (Epub 2017/10/19).
Article CAS PubMed PubMed Central Google Scholar
Dobrowolski C, Valadkhan S, Graham AC, Shukla M, Ciuffi A, Telenti A, Karn J. Entry of polarized effector cells into quiescence forces HIV latency. MBio. 2019. https://doi.org/10.1128/mBio.00337-19. (Epub 2019/03/28).
Article PubMed PubMed Central Google Scholar
Bosque A, Planelles V. Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood. 2009;113(1):58–65. https://doi.org/10.1182/blood-2008-07-168393. (Epub 20081010).
Article CAS PubMed PubMed Central Google Scholar
Kim M, Hosmane NN, Bullen CK, Capoferri A, Yang HC, Siliciano JD, Siliciano RF. A primary CD4(+) T cell model of HIV-1 latency established after activation through the T cell receptor and subsequent return to quiescence. Nat Protoc. 2014;9(12):2755–70. https://doi.org/10.1038/nprot.2014.188. (Epub 2014/11/07).
Article CAS PubMed PubMed Central Google Scholar
Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. 1999;5(5):512–7. https://doi.org/10.1038/8394. (Epub 1999/05/06).
Article CAS PubMed Google Scholar
Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278(5341):1295–300. https://doi.org/10.1126/science.278.5341.1295. (Epub 1997/11/21).
Article CAS PubMed Google Scholar
Chun TW, Engel D, Berrey MM, Shea T, Corey L, Fauci AS. Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection. Proc Natl Acad Sci U S A. 1998;95(15):8869–73. https://doi.org/10.1073/pnas.95.15.8869. (Epub 1998/07/22).
Article CAS PubMed PubMed Central Google Scholar
Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A. 1997;94(24):13193–7. https://doi.org/10.1073/pnas.94.24.13193. (Epub 1997/12/16).
Article CAS PubMed PubMed Central Google Scholar
Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA, Richman DD. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science. 1997;278(5341):1291–5. https://doi.org/10.1126/science.278.5341.1291. (Epub 1997/11/21).
Article CAS PubMed Google Scholar
Gantner P, Buranapraditkun S, Pagliuzza A, Dufour C, Pardons M, Mitchell JL, et al. HIV rapidly targets a diverse pool of CD4(+) T cells to establish productive and latent infections. Immunity. 2023;56(3):653-68.e5. https://doi.org/10.1016/j.immuni.2023.01.030. (Epub 20230217).
Comments (0)