Inhibition of caspase pathways limits CD4+ T cell loss and restores host anti-retroviral function in HIV-1 infected humanized mice with augmented lymphoid tissue

HIV/AIDS. https://www.who.int/data/gho/data/themes/hiv-aids.

Pawlowski A, Jansson M, Sköld M, Rottenberg ME, Källenius G. Tuberculosis and HIV Co-infection. PLoS Pathog. 2012;8:e1002464.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teweldemedhin M, Asres N, Gebreyesus H, Asgedom SW. Tuberculosis-human immunodeficiency virus (HIV) co-infection in Ethiopia: a systematic review and meta-analysis. BMC Infect Dis. 2018;18:676.

Article  PubMed  PubMed Central  Google Scholar 

Huante MB, Nusbaum RJ, Endsley JJ. Co-infection with TB and HIV: converging Epidemics, Clinical challenges, and Microbial Synergy. In: Cirillo JD, Kong Y, editors. Tuberculosis host-Pathogen interactions. Cham: Springer International Publishing; 2019. pp. 123–53. https://doi.org/10.1007/978-3-030-25381-3_7.

Chapter  Google Scholar 

HIV–TB co. -infection: mechanisms that drive reactivation of Mycobacterium tuberculosis in HIV infection - Ahmed– 2016 - Oral Diseases - Wiley Online Library. https://onlinelibrary.wiley.com/doi/full/10.1111/odi.12390.

Dzinamarira T, et al. Risk of mortality in HIV-infected COVID-19 patients: a systematic review and meta-analysis. J Infect Public Health. 2022;15:654–61.

Article  PubMed  PubMed Central  Google Scholar 

Nomaguchi M, et al. Species tropism of HIV-1 modulated by viral accessory proteins. Front Microbiol. 2012;3:267.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gillgrass A, Wessels JM, Yang JX, Kaushic C. Advances in Humanized Mouse models to improve understanding of HIV-1 Pathogenesis and Immune responses. Front Immunol. 2020;11:617516.

Article  CAS  PubMed  Google Scholar 

Kumar S, et al. In vivo Lentiviral Gene Delivery of HLA-DR and Vaccination of Humanized mice for improving the Human T and B Cell Immune reconstitution. Biomedicines. 2021;9:961.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanchez JL, et al. Lymphoid fibrosis occurs in long-term nonprogressors and persists with antiretroviral therapy but may be reversible with curative interventions. J Infect Dis. 2015;211:1068–75.

Article  CAS  PubMed  Google Scholar 

Lederman MM, Margolis L. THE LYMPH NODE IN HIV PATHOGENESIS. Semin Immunol. 2008;20:187–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walcher L, et al. Humanized mouse model: hematopoietic stemcell transplantation and tracking using short tandem repeat technology. Immun Inflamm Dis. 2020;8:363–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDermott SP, Eppert K, Lechman ER, Doedens M, Dick JE. Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood. 2010;116:193–200.

Article  CAS  PubMed  Google Scholar 

Brehm MA, et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rgamma(null) mutation. Clin Immunol. 2010;135:84–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pearson T, Greiner DL, Shultz LD. Creation of Humanized mice to Study Human immunity. Curr Protoc Immunol CHAPTER, Unit-15.21 (2008).

Watanabe S, et al. Hematopoietic stem cell–engrafted NOD/SCID/IL2Rγnull mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood. 2007;109:212–8.

Article  CAS  PubMed  Google Scholar 

Cheng L, Ma J, Li G, Su L. Humanized mice engrafted with Human HSC only or HSC and Thymus support comparable HIV-1 replication, Immunopathology, and responses to ART and Immune Therapy. Front Immunol. 2018;9:817.

Article  PubMed  PubMed Central  Google Scholar 

Satheesan S, et al. HIV replication and latency in a humanized NSG mouse model during suppressive oral combinational antiretroviral therapy. J Virol. 2018;92:e02118–17.

Article  PubMed  PubMed Central  Google Scholar 

Kumar P, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in Humanized mice. Cell. 2008;134:577–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Endsley JJ, Huante MB, Naqvi KF, Gelman BB, Endsley MA. Advancing our understanding of HIV co-infections and neurological disease using the humanized mouse. Retrovirology. 2021;18:14.

Article  PubMed  PubMed Central  Google Scholar 

Huante MB, et al. Small Animal Model of Post-chemotherapy Tuberculosis Relapse in the setting of HIV co-infection. Front Cell Infect Microbiol. 2020;10:150.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lang J, et al. Studies of lymphocyte reconstitution in a humanized mouse model reveal a requirement of T cells for human B cell maturation. J Immunol. 2013;190:2090–101.

Article  CAS  PubMed  Google Scholar 

Brehm MA, Shultz LD, Luban J, Greiner DL. Overcoming current limitations in Humanized Mouse Research. J Infect Dis. 2013;208:S125–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jangalwe S, Shultz LD, Mathew A, Brehm MA. Improved B cell development in humanized NOD-scid IL2Rγnull mice transgenically expressing human stem cell factor, granulocyte‐macrophage colony‐stimulating factor and interleukin‐3. Immun Inflamm Dis. 2016;4:427–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seung E, Tager AM. Humoral immunity in Humanized mice: a work in Progress. J Infect Dis. 2013;208:S155–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kazi JU, Rönnstrand L. FMS-like tyrosine kinase 3/FLT3: from Basic Science to Clinical implications. Physiol Rev. 2019;99:1433–66.

Article  CAS  PubMed  Google Scholar 

Karsunky H, Merad M, Cozzio A, Weissman IL, Manz MG. Flt3 Ligand regulates dendritic Cell Development from Flt3 + lymphoid and myeloid-committed progenitors to Flt3 + dendritic cells in vivo. J Exp Med. 2003;198:305–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Capitano ML, Zhang S, Broxmeyer HE. Flt3 Ligand☆. Reference Module in Neuroscience and Biobehavioral psychology. Elsevier; 2017. https://doi.org/10.1016/B978-0-12-809324-5.03249-1.

Lyman SD, McKenna HJ. CHAPTER 42 - Flt3 ligand. In: Thomson AW, Lotze MT, editors. The Cytokine Handbook (Fourth Edition). London: Academic; 2003. pp. 989–1010. https://doi.org/10.1016/B978-012689663-3/50046-6.

Chapter  Google Scholar 

McKenna HJ, et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood. 2000;95:3489–97.

Article  CAS  PubMed  Google Scholar 

Li Y, et al. A novel Flt3-deficient HIS mouse model with selective enhancement of human DC development. Eur J Immunol. 2016;46:1291–9.

Article  CAS  PubMed  Google Scholar 

Ding Y, et al. FLT3-Ligand treatment of Humanized mice results in the generation of large numbers of CD141 + and CD1c + dendritic cells in vivo. J Immunol. 2014;192:1982–9.

Article  CAS  PubMed  Google Scholar 

Baldwin BR, et al. Transgenic mice expressing Tel-FLT3, a constitutively activated form of FLT3, develop myeloproliferative disease. Leukemia. 2007;21:764–71.

Article  CAS  PubMed  Google Scholar 

Sansonetti PJ, et al. Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity. 2000;12:581–90.

Article  CAS  PubMed  Google Scholar 

Burdette BE, Esparza AN, Zhu H, Wang S. Gasdermin D in pyroptosis. Acta Pharm Sinica B. 2021;11:2768–82.

Article  CAS  Google Scholar 

Yang Y, Wu J, Lu Y. Mechanism of HIV-1-TAT induction of Interleukin-1β from human monocytes: involvement of the phospholipase C/Protein kinase C Signaling Cascade. J Med Virol. 2010;82:735–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shive CL, et al. Inflammatory cytokines drive CD4 + T-Cell Cycling and impaired responsiveness to Interleukin 7: implications for Immune failure in HIV Disease. J Infect Dis. 2014;210:619–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo H, Gao J, Taxman DJ, Ting JPY, Su L. HIV-1 infection induces interleukin-1β production via TLR8 protein-dependent and NLRP3 inflammasome mechanisms in human monocytes. J Biol Chem. 2014;289:21716–26.

Article  PubMed  PubMed Central  Google Scholar 

Doitsh G, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 2014;505:509–14.

Comments (0)

No login
gif