The Emerging Pro-Algesic Profile of Transient Receptor Potential Vanilloid Type 4

Alessandri-Haber N, Yeh JJ, Boyd AE et al (2003) Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 3:497–511

Google Scholar 

Alessandri-Haber N, Dina OA, Yeh JJ et al (2004) Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 24:4444–4452

Google Scholar 

Alessandri-Haber N, Joseph E, Dina OA, Liedtke W, Levine JD (2005) TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 118:70–79

Google Scholar 

Alessandri-Haber N, Dina OA, Joseph EK et al (2006) A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J Neurosci 26:3864–3874

Google Scholar 

Alessandri-Haber N, Dina OA, Joseph EK et al (2008) Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J Neurosci 28:1046–1057

Google Scholar 

Alessandri-Haber N, Dina OA, Chen X, Levine JD (2009) TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 29:6217–6228

Google Scholar 

Bakri MM, Yahya F, Munawar KMM (2018) Transient receptor potential vanilloid 4 (TRPV4) expression on the nerve fibers of human dental pulp is upregulated under inflammatory condition. Arch Oral Biol 89:94–98

Google Scholar 

Balemans D, Aguilera-Lizarraga J, Florens MV et al (2019) Histamine-mediated potentiation of transient receptor potential (TRP) ankyrin 1 and TRP vanilloid 4 signaling in submucosal neurons in patients with irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 316:G338–G349

Google Scholar 

Baratchi S, Keov P, Darby WG et al (2019) The TRPV4 agonist GSK1016790A regulates the membrane expression of TRPV4 channels. Front Pharmacol. https://doi.org/10.3389/fphar.2019.00006

Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

Google Scholar 

Becker D, Bereiter-Hahn J, Jendrach M (2009) Functional interaction of the cation channel transient receptor potential vanilloid 4 (TRPV4) and actin in volume regulation. Eur J Cell Biol 88:141–152

Google Scholar 

Beraldo WT, Andrade SP (1997) Discovery of bradykinin and the kallikrein-kinin system. In: Farmer SG (ed) The kinin system. Academic Press, San Diego

Google Scholar 

Berna-Erro A, Izquierdo-Serra M, Sepúlveda RV et al (2017) Structural determinants of 5′,6′-epoxyeicosatrienoic acid binding to and activation of TRPV4 channel. Sci Rep 7:10522

Google Scholar 

Boehmerle W, Huehnchen P, Lee SLL et al (2018) TRPV4 inhibition prevents paclitaxel-induced neurotoxicity in preclinical models. Exp Neurol 306:64–75

Google Scholar 

Brierley SM, Page AJ, Hughes PA et al (2008) Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134:2059–2069

Google Scholar 

Cao DS, Yu SQ, Premkumar LS (2009) Modulation of transient receptor potential Vanilloid 4-mediated membrane currents and synaptic transmission by protein kinase C. Mol Pain 10:5

Google Scholar 

Carlton SM (2014) Nociceptive primary afferents: they have a mind of their own. J Physiol 592:3403–3411

Google Scholar 

Cenac N, Bautzova T, Le Faouder P (2015) Quantification and potential functions of endogenous agonists of transient receptor potential channels in patients with irritable bowel syndrome. Gastroenterology 149:433–44.e7

Google Scholar 

Ceppa E, Cattaruzza F, Lyo V et al (2010) Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice. Am J Physiol Gastrointest Liver Physiol 299:G556–G571

Google Scholar 

Chen X, Alessandri-Haber N, Levine JD (2007) Marked attenuation of inflammatory mediator-induced C-fiber sensitization for mechanical and hypotonic stimuli in TRPV4−/− mice. Mol Pain 3:31

Google Scholar 

Chen Y, Yang C, Wang ZJ (2011) Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 193:440–451

Google Scholar 

Chen Y, Williams SH, McNulty AL et al (2013) Temporomandibular joint pain: a critical role for Trpv4 in the trigeminal ganglion. Pain 154:1295–1304

Google Scholar 

Chen Y, Kanju P, Fang Q et al (2014) TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor. Pain 155:2662–2672

Google Scholar 

Chen JY, Kubo A, Shinoda M, Okada-Ogawa A et al (2020) Involvement of TRPV4 ionotropic channel in tongue mechanical hypersensitivity in dry-tongue rats. J Oral Sci 62:13–17

Google Scholar 

Chen Y, Wang ZL, Yeo M et al (2021) Epithelia-sensory neuron cross talk underlies cholestatic itch induced by lysophosphatidylcholine. Gastroenterology 161:301–317.e16

Google Scholar 

Choi G, Yang TJ, Yoo S (2019) TRPV4-mediated anti-nociceptive effect of suberanilohydroxamic acid on mechanical pain. Mol Neurobiol 56:444–453

Google Scholar 

Costa R, Motta EM, Dutra RC et al (2011) Anti-nociceptive effect of kinin B1 and B2 receptor antagonists on peripheral neuropathy induced by paclitaxel in mice. Br J Pharmacol 164:681–693

Google Scholar 

Costa R, Bicca MA, Manjavachi MN et al (2018) Kinin receptors sensitize TRPV4 channel and induce mechanical hyperalgesia: relevance to paclitaxel-induced peripheral neuropathy in mice. Mol Neurobiol 55:2150–2161

Google Scholar 

Coste B, Mathur J, Schmidt M (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60

Google Scholar 

Cuajungco MP, Grimm C, Oshima K et al (2006) PACSINs bind to the TRPV4 cation channel. PACSIN 3 modulates the subcellular localization of TRPV4. J Biol Chem 281:18753–18762

Google Scholar 

Cui YY, Li MY, Li YT et al (2020) Expression and functional characterization of transient receptor potential vanilloid 4 in the dorsal root ganglion and spinal cord of diabetic rats with mechanical allodynia. Brain Res Bull 162:30–39

Google Scholar 

Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:1979–1987

Google Scholar 

De Logu F, Trevisan G, Marone IM et al (2020) Oxidative stress mediates thalidomide-induced pain by targeting peripheral TRPA1 and central TRPV4. BMC Biol 18:197

Google Scholar 

Denadai-Souza A, Martin L, de Paula MA et al (2012) Role of transient receptor potential vanilloid 4 in rat joint inflammation. Arthritis Rheum 64:1848–1858

Google Scholar 

Dias FC, Alves VS, Matias DO (2019) The selective TRPV4 channel antagonist HC-067047 attenuates mechanical allodynia in diabetic mice. Eur J Pharmacol 856:172408

Google Scholar 

Ding XL, Wang YH, Ning LP et al (2010) Involvement of TRPV4-NO-cGMP-PKG pathways in the development of thermal hyperalgesia following chronic compression of the dorsal root ganglion in rats. Behav Brain Res 208:194–201

Google Scholar 

Dunn KM, Hill-Eubanks DC, Liedtke WB et al (2013) TRPV4 channels stimulate Ca2+−induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc Natl Acad Sci U S A 110:6157–6162

Google Scholar 

Earley S, Heppner TJ, Nelson MT, Brayden JE (2005) TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res 97:1270–1279

Google Scholar 

Everaerts W, Nilius B, Owsianik G (2010) The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog Biophys Mol Biol 103:2–17

Google Scholar 

Fan HC, Zhang X, McNaughton PA (2009) Activation of the TRPV4 ion channel is enhanced by phosphorylation. J Biol Chem 284:27884–27891

Google Scholar 

Fan X, Wang C, Han J et al (2021) Role of TRPV4-P2X7 pathway in neuropathic pain in rats with chronic compression of the dorsal root ganglion. Neurochem Res 46:2143–2153

Google Scholar 

Fernandes J, Lorenzo IM, Andrade YN et al (2008) IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5′-6′-epoxyeicosatrienoic acid. J Cell Biol 81:143–155

Google Scholar 

Fuertes G, Giménez D, Esteban-Martin S et al (2010) Role of membrane lipids for the activity of pore forming peptides and proteins. Adv Exp Med Biol 677:31–55

Google Scholar 

Gao F, Wang DH (2010) Hypotension induced by activation of the transient receptor potential vanilloid 4 channels: role of Ca2+-activated K+ channels and sensory nerves. J Hypertens 28:102–110

Google Scholar 

Gao X, Wu L, O'Neil RG (2003) Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 278:27129–27137

Google Scholar 

Garcia-Elias A, Mrkonjic S, Pardo-Pastor C et al (2013) Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli. Proc Natl Acad Sci U S A 110:9553–9558

Google Scholar 

Grant AD, Cottrell GS, Amadesi S et al (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578:715–733

Google Scholar 

Groten CJ, Rebane JT, Blohm G, Magoski NS (2013) Separate Ca2+ sources are buffered by distinct Ca2+ handling systems in aplysia neuroendocrine cells. J Neurosci 33:6476–6491

Google Scholar 

Güler AD, Lee H, Iida T et al (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414

Google Scholar 

Han Q, Liu D, Convertino M et al (2018) miRNA-711 binds and activates TRPA1 extracellularly to evoke acute and chronic pruritus. Neuron 99:449–463.e6

Google Scholar 

Hartmannsgruber V, Heyken WT, Kacik M et al (2007) Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS One 2:e827

Google Scholar 

Hassler SN, Ahmad FB, Burgos-Vega CC (2019) Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice. Cephalalgia 39:111–122

Google Scholar 

He D, Pan Q, Chen Z et al (2017) Treatment of hypertension by increasing impaired endothelial TRPV4-KCa2.3 interaction. EMBO Mol Med 9:1491–1503

Google Scholar 

Hinata M, Imai S, Sanaki T et al (2018) Sensitization of transient receptor potential vanilloid 4 and increasing its endogenous ligand 5,6-epoxyeicosatrienoic acid in rats with monoiodoacetate-induced osteoarthritis. Pain 159:939–947

Google Scholar 

Hu F, Hui Z, Wei W et al (2017) Hypotonic stress promotes ATP release, reactive oxygen species production and cell proliferation via TRPV4 activation in rheumatoid arthritis rat synovial fibroblasts. Biochem Biophys Res Commun 486:108–115

Google Scholar 

Hu W, Ding Y, Li Q et al (2020) Transient receptor potential vanilloid 4 channels as therapeutic targets in diabetes and diabetes-related complications. J Diabetes Investig. https://doi.org/10.1111/jdi.13244

Hyun JJ, Lee HS (2014) Experimental models of pancreatitis. Clin Endosc 47:212–216

Google Scholar 

Inoue K, Tsuda M, Koizumi S (2005) ATP receptors in pain sensation: involvement of spinal microglia and P2X(4) receptors. Purinergic Signal 1:95–100

Google Scholar 

Ishibashi T, Takumida M, Akagi N et al (2008) Expression of transient receptor potential vanilloid (TRPV) 1, 2, 3, and 4 in mouse inner ear. Acta Otolaryngol 128:1288–1293

Google Scholar 

Ito M, Ono K, Hitomi S et al (2017) Prostanoid-dependent spontaneous pain and PAR2-dependent mechanical allodynia following oral mucosal trauma: involvement of TRPV1, TRPA1 and TRPV4. Mol Pain 13:1744806917704138

Google Scholar 

Jensen TS, Finnerup NB (2014) Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol 13:924–935

Google Scholar 

Jolivalt CG, Frizzi KE, Guernsey L (2016) Peripheral neuropathy in mouse models of diabetes. Curr Protoc Mouse Biol 6:223–255

Google Scholar 

Kanju P, Chen Y, Lee W (2016) Small molecule dual-inhibitors of TRPV4 and TRPA1 for attenuation of inflammation and pain. Sci Rep 6:26894

Google Scholar 

Kawasaki S, Soga M, Sakurai Y (2021) Selective blockade of transient receptor potential vanilloid 4 reduces cyclophosphamide-induced bladder pain in mice. Eur J Pharmacol 899:174040

Google Scholar 

Kobayashi K, Ashina K, Derouiche S et al (2021) 5,6-dihydroxy-8Z,11Z,14Z,17Z-eicosatetraenoic acid accelerates the healing of colitis by inhibiting transient receptor potential vanilloid 4-mediated signaling. FASEB J 35:e21238

Google Scholar 

Koeppen BM, Stanton BA (2013) Renal physiology, 5th edn. Elsevier

Google Scholar 

Köttgen M, Buchholz B, Garcia-Gonzalez MA et al (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182:437–447

Google Scholar 

Lan Z, Chen L, Feng J et al (2021) Mechanosensitive TRPV4 is required for crystal-induced inflammation. Ann Rheum Dis 80:1604–1614

Google Scholar 

Lapajne L,

Comments (0)

No login
gif