Aluminium production process: from Hall–Héroult to modern smelters

Kozlowski R, Wladyka-Przybylak MAR (2001) Natural polymers, wood and lignocellulosic materials. In: Horrocks AR, Price D (eds) Fire retardant materials. Woodhead Publishing Limited, Cambridge

Google Scholar 

Osborn EL (2016) From bauxite to cooking pots: aluminum, chemistry, and West African artisanal production. Hist Sci 54(4):425–442. https://doi.org/10.1177/0073275316681806

Article  PubMed  Google Scholar 

Pearse MJ (2003) Historical use and future development of chemicals for solid–liquid separation in the mineral processing industry. Miner Eng 16(2):103–108. https://doi.org/10.1016/S0892-6875(02)00288-1

CAS  Article  Google Scholar 

Ashkenazi D (2019) How aluminum changed the world: a metallurgical revolution through technological and cultural perspectives. Technol Forecast Soc Chang 143:101–113. https://doi.org/10.1016/j.techfore.2019.03.011

Article  Google Scholar 

Baker I (2018) Aluminium/aluminum. Fifty materials that make the world. Springer, Cham. https://doi.org/10.1007/978-3-319-78766-4_2

Book  Google Scholar 

Habashi F (2013) The beginnings of the aluminum industry. Nano studies 8:333–344

Google Scholar 

Le Roux M (2015) From science to industry: the sites of aluminium in France from the nineteenth to the twentieth century. Ambix 62(2):114–137. https://doi.org/10.1179/1745823415Y.0000000001

CAS  Article  PubMed  Google Scholar 

Eskin DG (2008) Physical metallurgy of direct chill casting of aluminum alloys. CRC Press, Taylor and Francis Group, New York

Book  Google Scholar 

Buffington J (2012) The beverage can in the United States: achieving a 100% recycled aluminum can through supply chain innovation. JOM 64(8):923–932. https://doi.org/10.1007/s11837-012-0381-6

Article  Google Scholar 

Anderson W (1888) Aluminium and its manufacture by the DEVILLE-CASTNER process. J Soc Arts 37:378

Google Scholar 

Hall C.M (1889) US Patent No. 400,664

Héroult P (1886) French Patent No. 175,711

McClung M, Ross JA (2000) A method to correlate raw material properties to baked anode core performance. Light Metals 2000:481–486

Google Scholar 

Kátai-Urbán L, Cséplı Z (2010) Disaster in the Ajak Red Mud sludge reservoir; Sixth Meeting of the Conference of the Parties to the Convention on the Transboundary Effects of Industrial Accidents. The Hague, 8–10 November 2010

Tsakiridis PE, Agatzini-Leonardou S, Oustadakis P (2004) Red mud addition in the raw meal for the production of Portland cement clinker. J Haz Mater 116(1–2):103–110

CAS  Article  Google Scholar 

Erςagğ E, Apak R (1997) Furnace smelting and extractive metallurgy of red mud: recovery of TiO2, Al2O3 and pig-iron. J Chem Tech Biotech 70(3):241–246

Article  Google Scholar 

Altundogan HS, Altundogan S, Tumen F, Bildik M (2002) Arsenic adsorption from aqueous solutions by activated red mud. Waste Manage 22:357–363

CAS  Article  Google Scholar 

Anawati J, Reid S, Azimi G (2018) Innovative and sustainable valorization process to recover scandium and rare earth elements from Canadian BR. Extraction 2018:2715–2722

Google Scholar 

Urato N (2005) Wave mode coupling and instability in the internal wave in aluminum reduction cells. Light Metals 2016:455–460. https://doi.org/10.1007/978-3-319-48156-2_53

Article  Google Scholar 

Kvande H, Haupin W (2001) Inert anodes for Al smelters: energy balances and environmental impact. JOM 53:29–33. https://doi.org/10.1007/s11837-001-0205-6

CAS  Article  Google Scholar 

Thorne RJ, Sommerseth C, Ratvik AP, Rørvik S, Sandnes E, Lossius LP, Linga H, Svensson AM (2015) Correlation between coke type, microstructure and anodic reaction overpotential in aluminium electrolysis. J Electrochem Soc 162:E296. https://doi.org/10.1149/2.0461512jes

CAS  Article  Google Scholar 

Thorne R, Sommerseth C, Ratvik AP, Rørvik S, Sandnes E, Lossius EP, Linga H, Svensson AM (2015) Bubble evolution and anode surface properties in aluminium electrolysis. J Electrochem Soc 162:E104. https://doi.org/10.1149/2.0321508jes

CAS  Article  Google Scholar 

Sørlie M, Øye H (2010) Cathodes in aluminium electrolysis. Aluminium GmbH, Düsseldorf

Google Scholar 

Østrem Ø (2013) Cathode wear in Hall-Héroult cells. Ph.D. Thesis, NTNU (Norway)

Picard D, Bouzemmi W, Allard B, Alamdari H, Fafard M (2010) Thermo-Mechanical characterisation of graphitic and graphitized carbon cathode materials used in aluminium electrolysis cells. Light Metals 2010:823–828

Google Scholar 

Picard D, Sorelli L, Réthoré J, Alamdari H, Baril MA, Fafard M (2017) Identification of the stress intensity factor of carbon cathode by digital image correlation. Light Metals 2017:1275–1280. https://doi.org/10.1007/978-3-319-51541-0_152

Article  Google Scholar 

Sørlie M, Øye H (1994) Cathodes in aluminium electrolysis. Aluminium, Düsseldorf

Google Scholar 

Grjotheim K, Næumann R, Oye H (1977) Formation of aluminum carbide in the presence of cryolite melts. Light Metals 1977:1

Google Scholar 

Keller F, Fischer WK (1992) Anode manufacturing in a changing environment: an overview. Light Metals 1992:673–686

Google Scholar 

Meier MW (1996) Cracking behaviour of anodes, PhD Thesis. Zurich: Federal Institute of Technology

Hulse KL (2000) Anode Manufacture Raw Materials Formulation and Processing Parameters (1st edn). R&D Carbon Ltd.

Belitskus DL, Danka DJ (2016) A comprehensive determination of effects of calcined petroleum coke properties on aluminum reduction cell anode properties. Light Metals 2016:59–72

Google Scholar 

Fischer WK, Perruchoud R (1987) Determining prebaked anode properties for aluminum production. JOM 39(11):43–45. https://doi.org/10.1007/BF03257539

CAS  Article  Google Scholar 

Belitskus DL (1993) An evaluation of relative effects of coke, formulation, and baking factors on aluminum reduction cell anode performance. Light Metals 1993:677–681

Google Scholar 

Suriyapraphadilok U, Andersen JM, Halleck P, Grader A (2005) Anode butt cores: physical characterization and reactivity. JOM 57(2):35–41. https://doi.org/10.1007/s11837-005-0213-z

CAS  Article  Google Scholar 

Alscher A, Wildforster R (1990) Performance of binder pitch with decreased QI-content in anode making—formation, nature, properties and substitution of quinoline insolubles. Light Metals 1990:232–238

Google Scholar 

Tayanchin AS, Frizorger VK, Kravtzova YD, Byront VS (2005) Studying mesophase contents in pitches from different sources. Light Metals 623–627

Sverdlin VA, Vedernikov GF, Fyodorov VK (1992) Optimization of technological parameters of aluminum production pot anode block vibration forming. Light Metals 1992:725–730

Google Scholar 

Auguie D, Oberlin M, Oberlin A, Hyvernat P (1981) Formation of thin mesophase layers at the interface between filler and binder in prebaked anodes. Effect of mixing on mesophase. Carbon 19(4):277–284. https://doi.org/10.1016/0008-6223(81)90073-7

CAS  Article  Google Scholar 

Couderc P, Hyvernat P, Lemarchand JL (1986) Correlations between ability of pitch to penetrate coke and the physical characteristics of prebaked anodes for the aluminium industry. Fuel 65(2):281–287. https://doi.org/10.1016/0016-2361(86)90022-0

CAS  Article  Google Scholar 

Rhedey PJ (1990) Laboratory evaluation of a low quinoline insolubles coal-tar pitch as anode binder. Light Metals 1990:605–608

Google Scholar 

Perruchoud RC, Meier MW, Werner K, Fischer WK, Olfgang HP (2001) Anode properties, cover materials and cell operation. Light Metals 2001:695–699

Google Scholar 

Perez M, Granda M, Santamaria R, Vina JA, Menedez R (2003) Formulation, structure and properties of carbon anodes from coal-tar pitch/petroleum pitch blends. Light Metals 2003:495–501

Google Scholar 

Fernandez JJ, Alonso F (2004) Anthracene oil synthetic pitch: a novel approach to hybrid pitches. Light Metals 499–502

Azari K, Alamdari H, Aryanpour GR, Picard D, Fafard M (2013) Mixing variables for prebaked anodes used in aluminum production. Powder Technol 235:341–348. https://doi.org/10.1016/j.powtec.2012.10.043

CAS  Article  Google Scholar 

Mchenry HR, Baron JT, Krupinski KC (1998) Development of anode binder pitch laboratory characterization methods. Light Metals 1989:769–774

Google Scholar 

Vidvei T, Eidet T, Sørlie M (2003) Paste granulometry and soderberg anode properties. Light Metals 2003:569–574

Google Scholar 

Azari K (2013) Investigation of the materials and paste relationships to improve forming process and anode quality, Ph.D. Thesis, Université Laval (Canada)

Thibodeau S, Chaouki H, Alamdari H, Ziegler D, Fafard M (2014) High temperature compression test to determine the anode paste mechanical properties. Light Metals 2014:1129–1134

Google Scholar 

Zaidani M, Abu Al-Rub R, Tajik AR, Shamim T (2016) Effects of flue wall deformation on aluminum anode baking homogeneity and temperature distribution. the international committee for study of bauxite, alumina & aluminum–ICSOBA 2016. Travaux 45:367–369

Google Scholar 

Bain GA, Pruneau JP, Williams J (1971) The effect of prebake anode baking temperature on potroom performance. Light Metals 1971:444–449

Google Scholar 

Dreyer C (1989) Anode reactivity influence of the baking process. Light Metals 1989:478–485

Google Scholar 

Molenaar D, Sadler BA (2014) Anode rodding basics. Light Metals 2014:1263–1268

Google Scholar 

Russell AS (1981) Pitfalls and pleasures in new aluminum process development. Metall Trans B 12(2):203–215. https://doi.org/10.1007/BF02654453

Article  Google Scholar 

Wang Z, Friis J, Ratvik AP (2018) Transport of sodium in TiB2 materials investigated by a laboratory test and DFT calculations. Light Metals 2018:1321–1328

Google Scholar 

Heidari H, Alamdari H, Dubé D, Schulz R (2012) Pressureless sintering of TiB2-based ceramics with Ti–Fe additives: sintering mechanism and stability in liquid aluminum. Adv Eng Mater 14(9):802–809. https://doi.org/10.1002/adem.201200067

CAS  Article  Google Scholar 

Galasiu I, Galasiu R, Thonstad J (2007) Inert anodes for aluminium electrolysis. Aluminium, Düsseldorf

Google Scholar 

Hay SJ, Metson JB, Hylan MM (2004) Sulfur speciation in aluminum smelting anodes. Ind Eng Chem Res 43(7):1690–1700. https://doi.org/10.1021/ie0301031

CAS  Article  Google Scholar 

Edwards L, Backhouse N, Darmstadt H, Dion MJ (2012) Evolution of anode grade coke quality. Light Metals 2012:1207–1212

Google Scholar 

Elkasabi Y, Darmstadt H, Boateng AA (2018) Renewable biomass-derived coke with texture suitable for aluminum smelting anodes. ACS Sustain Chem Eng 6(10):13324–13331. https://doi.org/10.1021/acssuschemeng.8b02963

CAS  Article  Google Scholar 

Elkasabi Y, Omolayo Y, Saptari S (2021) Continuous calcination of biocoke/petcoke blends in a rotary tube furnace. ACS Sustain Chem Eng 9(2):695–703. https://doi.org/10.1021/acssuschemeng.0c06307

CAS  Article  Google Scholar 

Huang X, Kocaefe D, Kocaefe Y (2018) Utilization of biocoke as a raw material for carbon anode production. Energy Fuels 32(8):8537–8544. https://doi.org/10.1021/acs.energyfuels.8b01832

CAS  Article  Google Scholar 

Amara B, Faouzi FE, Kocaefe D, Kocaefe Y, Bhattacharyay D, Côté J, Gilbert A (2021) Modification of biocoke destined for the fabrication of anodes used in primary aluminum production. Fuel 304:121352. https://doi.org/10.1016/j.fuel.2021.121352

CAS  Article  Google Scholar 

Hussein A, Larachi F, Ziegler D, Alamdari H (2016) Effects of heat treatment and acid washing on properties and reactivity of charcoal. Biomass Bioenerg 90:101–113. https://doi.org/10.1016/j.biombioe.2016.03.041

CAS  Article  Google Scholar 

Hussein A, Fafard M, Ziegler D, Alamdari H (2017) Effects of charcoal addition on the properties of carbon anodes. Metals 7(3):98. https://doi.org/10.3390/met7030098

CAS 

留言 (0)

沒有登入
gif