Triterpenoid CDDO-IM protects against lipopolysaccharide-induced inflammatory response and cytotoxicity in macrophages: The involvement of the NF-κB signaling pathway

1. Zhang, G, Meredith, TC, Kahne, D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr Opin Microbiol 2013;16:779–85
Google Scholar | Crossref2. Cavaillon, JM . Exotoxins and endotoxins: inducers of inflammatory cytokines. Toxicon 2018;149:45–53
Google Scholar | Crossref | Medline3. Gabarin, RS, Li, M, Zimmel, PA, Marshall, JC, Li, Y, Zhang, H. Intracellular and extracellular lipopolysaccharide signaling in sepsis: avenues for novel therapeutic strategies. J Innate Immun 2021;13:323–32
Google Scholar | Crossref | Medline4. Zhang, X, Wang, J, Fan, Y, Yang, L, Wang, L, Ma, J. Zinc supplementation attenuates high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelial cells. Biol Trace Elem Res 2012;150:229–35
Google Scholar5. Pérez-Hernández, EG, Delgado-Coello, B, Luna-Reyes, I, Mas-Oliva, J. New insights into lipopolysaccharide inactivation mechanisms in sepsis. Biomed Pharmacother 2021;141:111890
Google Scholar | Crossref | Medline6. Chen, X, Liu, Y, Gao, Y, Shou, S, Chai, Y. The roles of macrophage polarization in the host immune response to sepsis. Int Immunopharmacol 2021;96:107791
Google Scholar | Crossref | Medline7. Gui, Q, Jiang, Z, Zhang, L. Insights into the modulatory role of cyclosporine A and its research advances in acute inflammation. Int Immunopharmacol 2021;93:107420
Google Scholar | Crossref | Medline8. Hu, Q, Lyon, CJ, Fletcher, JK, Tang, W, Wan, M, Hu, TY. Extracellular vesicle activities regulating macrophage- and tissue-mediated injury and repair responses. Acta Pharm Sin B 2021;11:1493–512
Google Scholar | Crossref9. Ariel, A, Maridonneau-Parini, I, Rovere-Querini, P, Levine, JS, Muhl, H. Macrophages in inflammation and its resolution. Front Immunol 2012;3:1–2
Google Scholar | Crossref | Medline10. Hasturk, H, Kantarci, A, Van Dyke, TE. Oral inflammatory diseases and systemic inflammation: role of the macrophage. Front Immunol 2012;3:118
Google Scholar | Crossref | Medline | ISI11. Honda, T, Rounds, BV, Gribble, GW, Suh, NJ, Wang, YP, Sporn, MB. Design and synthesis of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, a novel and highly active inhibitor of nitric oxide production in mouse macrophages. Bioorg Med Chem Lett 1998;8:2711–4
Google Scholar | Crossref | Medline12. Kress, CL, Konopleva, M, Martinez-Garcia, V, Krajewska, M, Lefebvre, S, Hyer, ML, McQueen, T, Andreeff, M, Reed, JC, Zapata, JM. Triterpenoids display single agent anti-tumor activity in a transgenic mouse model of chronic lymphocytic leukemia and small B cell lymphoma. PLoS ONE 2007;2:1–11
Google Scholar | Crossref13. Liby, K, Voong, N, Williams, CR, Risingsong, R, Royce, DB, Honda, T, Gribble, GW, Sporn, MB, Letterio, JJ. The synthetic triterpenoid CDDO-imidazolide suppresses STAT phosphorylation and induces apoptosis in myeloma and lung cancer cells. Clin Cancer Res 2006;12:4288–93
Google Scholar | Crossref14. Honda, T, Rounds, BV, Bore, L, Finlay, HJ, Favaloro, FG, Suh, N, Wang, YP, Sporn, MB, Gribble, GW. Synthetic oleanane and ursane triterpenoids with modified rings A and C: a series of highly active inhibitors of nitric oxide production in mouse macrophages. J Med Chem 2000;43:4233–46
Google Scholar15. Liby, K, Royce, DB, Williams, CR, Risingsong, R, Yore, MM, Honda, T, Gribble, GW, Dmitrovsky, E, Sporn, TA, Sporn, MB. The synthetic triterpenoids CDDO-methyl ester and CDDO-ethyl amide prevent lung cancer induced by vinyl carbamate in A/J mice. Cancer Res 2007;67:2414–9
Google Scholar | Crossref | Medline16. Dellinger, RP, Levy, MM, Carlet, JM, Bion, J, Parker, MM, Jaeschke, R, Reinhart, K, Angus, DC, Brun-Buisson, C, Beale, R, Calandra, T, Dhainaut, JF, Gerlach, H, Harvey, M, Marini, JJ, Marshall, J, Ranieri, M, Ramsay, G, Sevransky, J, Thompson, BT, Townsend, S, Vender, JS, Zimmerman, JL, Vincent, JL. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008;36:296–327
Google Scholar | Crossref | Medline | ISI17. Victor, VM, Rocha, M, De la Fuente, M. Immune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol 2004;4:327–47
Google Scholar | Crossref | Medline18. Bertani, B, Ruiz, N. Function and biogenesis of lipopolysaccharides. Ecosal Plus 2018;8:1–19
Google Scholar | Crossref19. Brown, KA, Brown, GA, Lewis, SM, Beale, R, Treacher, DF. Targeting cytokines as a treatment for patients with sepsis: a lost cause or a strategy still worthy of pursuit. Int Immunopharmacol 2016;36:291–9
Google Scholar | Crossref | Medline20. Chaudhry, H, Zhou, J, Zhong, Y, Ali, MM, McGuire, F, Nagarkatti, PS, Nagarkatti, M. Role of cytokines as a double-edged sword in sepsis. In Vivo 2013;27:669–84
Google Scholar | Medline21. Moriyama, K, Nishida, O. Targeting cytokines, pathogen-associated molecular patterns, and damage-associated molecular patterns in sepsis via blood purification. Int J Mol Sci 2021;22:1–17
Google Scholar | Crossref22. Schulte, W, Bernhagen, J, Bucala, R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets–an updated view. Mediat Inflamm 2013;2013:1–16
Google Scholar | Crossref23. Hilliard, A, Mendonca, P, Soliman, KFA. Involvement of NFƙB and MAPK signaling pathways in the preventive effects of Ganoderma lucidum on the inflammation of BV-2 microglial cells induced by LPS. J Neuroimmunol 2020;345:1–8
Google Scholar | Crossref24. Huang, W, Cao, Y, Liu, Y, Ping, F, Shang, J, Zhang, Z, Li, Y. Activating Mas receptor protects human pulmonary microvascular endothelial cells against LPS-induced apoptosis via the NF-kB p65/P53 feedback pathways. J Cell Physiol 2019;234:12865–75
Google Scholar | Crossref25. Lai, J, Ge, M, Shen, S, Yang, L, Jin, T, Cao, D, Xu, H, Zheng, X, Qiu, S, Wang, K, Wei, Q, Li, H, Ai, J. Activation of NFKB-JMJD3 signaling promotes bladder fibrosis via boosting bladder smooth muscle cell proliferation and collagen accumulation. Biochim Biophys Acta Mol Basis Dis 2019;1865:2403–10
Google Scholar | Crossref26. Maciel, E, Neves, BM, Martins, J, Colombo, S, Cruz, MT, Domingues, P, Domingues, MRM. Oxidized phosphatidylserine mitigates LPS-triggered macrophage inflammatory status through modulation of JNK and NF-kB signaling cascades. Cell Signal 2019;61:30–8
Google Scholar | Crossref | Medline27. Sousa, NA, Oliveira, GAL, de Oliveira, AP, Lopes, ALF, Iles, B, Nogueira, KM, Araújo, TSL, Souza, LKM, Araújo, AR, Ramos-Jesus, J, Plácido, A, Amaral, C, Campelo, YDM, Barbosa, EA, Portugal, CC, Socodato, R, Lobo, A, Relvas, J, Bemquerer, M, Eaton, P, Leite, J, Medeiros, JVR. Novel ocellatin peptides mitigate LPS-induced ROS formation and NF-kB activation in microglia and hippocampal neurons. Sci Rep 2020;10:1–16
Google Scholar | Crossref | Medline28. Ye, W, Yan, Y, Tang, Y, Dong, X, Chen, G, Kang, J, Huang, L, Xiong, Q, Feng, Z. Orexin-A attenuates inflammatory responses in lipopolysaccharide-induced neural stem cells by regulating NF-KB and phosphorylation of MAPK/P38/Erk pathways. J Inflamm Res 2021;14:2007–17
Google Scholar | Crossref29. Guo, RF, Ward, PA. Role of oxidants in lung injury during sepsis. Antioxid Redox Signal 2007;9:1991–2002
Google Scholar | Crossref | Medline | ISI

Comments (0)

No login
gif