1. Mills, KT, Bundy, JD, Kelly, TN, Reed, JE, Kearney, PM, Reynolds, K, Chen, J, He, J. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 2016; 134:441–50
Google Scholar |
Crossref |
Medline |
ISI2. Fujita, T. Mechanism of salt-sensitive hypertension: focus on adrenal and sympathetic nervous systems. J Am Soc Nephrol 2014; 25:1148–55
Google Scholar |
Crossref |
Medline3. He, FJ, Tan, M, Ma, Y, MacGregor, GA. Salt reduction to prevent hypertension and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol 2020; 75:632–47
Google Scholar |
Crossref |
Medline4. Yang, T, Richards, EM, Pepine, CJ, Raizada, MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 2018; 14:442–56
Google Scholar |
Crossref |
Medline5. Chen, L, He, FJ, Dong, Y, Huang, Y, Wang, C, Harshfield, GA, Zhu, H. Modest sodium reduction increases circulating short-chain fatty acids in untreated hypertensives: a randomized, double-blind, placebo-controlled trial. Hypertension 2020; 76:73–9
Google Scholar |
Crossref |
Medline6. Abais-Battad, JM, Mattson, DL. Influence of dietary protein on dahl salt-sensitive hypertension: a potential role for gut microbiota. Am J Physiol Regul Integr Comp Physiol 2018; 315:R907–R14
Google Scholar |
Crossref |
Medline7. Batista, MAC, Braga, DCA, de Moura, SAL, de Souza, GHB, Dos Santos, ODH, Cardoso, LM. Salt-dependent hypertension and inflammation: targeting the gut-brain axis and the immune system with Brazilian green propolis. Inflammopharmacology 2020; 28:1163–82
Google Scholar |
Crossref |
Medline8. Bier, A, Braun, T, Khasbab, R, Di Segni, A, Grossman, E, Haberman, Y, Leibowitz, A. A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt-sensitive hypertension rat model. Nutrients 2018; 10:1154
Google Scholar |
Crossref9. Assa, A, Vong, L, Pinnell, LJ, Avitzur, N, Johnson-Henry, KC, Sherman, PM. Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. J Infect Dis 2014; 210:1296–305
Google Scholar |
Crossref |
Medline |
ISI10. Zeng, Y, Luo, M, Pan, L, Chen, Y, Guo, S, Luo, D, Zhu, L, Liu, Y, Pan, L, Xu, S, Zhang, R, Zhang, C, Wu, P, Ge, L, Noureddin, M, Pandol, SJ, Han, Y-P. Vitamin D signaling maintains intestinal innate immunity and gut microbiota: potential intervention for metabolic syndrome and NAFLD. Am J Physiol Gastrointest Liver Physiol 2020; 318:G542–G53
Google Scholar |
Crossref |
Medline11. Chang, SH, Chung, Y, Dong, C. Vitamin D suppresses Th17 cytokine production by inducing C/EBP homologous protein (CHOP) expression. J Biol Chem 2010; 285:38751–5
Google Scholar |
Crossref |
Medline |
ISI12. Zold, E, Szodoray, P, Kappelmayer, J, Gaal, J, Csathy, L, Barath, S, Gyimesi, E, Hajas, A, Zeher, M, Szegedi, G, Bodolay, E. Impaired regulatory T-cell homeostasis due to vitamin D deficiency in undifferentiated connective tissue disease. Scand J Rheumatol 2010; 39:490–7
Google Scholar |
Crossref |
Medline13. Latic, N, Erben, RG. Vitamin D and cardiovascular disease, with emphasis on hypertension, atherosclerosis, and heart failure. Ijms 2020; 21:6483
Google Scholar |
Crossref14. Dong, J, Wong, SL, Lau, CW, Lee, HK, Ng, CF, Zhang, L, Yao, X, Chen, ZY, Vanhoutte, PM, Huang, Y. Calcitriol protects renovascular function in hypertension by down-regulating angiotensin II type 1 receptors and reducing oxidative stress. Eur Heart J 2012; 33:2980–90
Google Scholar |
Crossref |
Medline |
ISI15. Chou, C-L, Pang, C-Y, Lee, TJF, Fang, T-C. Beneficial effects of calcitriol on hypertension, glucose intolerance, impairment of endothelium-dependent vascular relaxation, and visceral adiposity in fructose-fed hypertensive rats. PLoS One 2015; 10:e0119843
Google Scholar |
Crossref |
Medline16. Wong, MSK, Delansorne, R, Man, RYK, Svenningsen, P, Vanhoutte, PM. Chronic treatment with vitamin D lowers arterial blood pressure and reduces endothelium-dependent contractions in the aorta of the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 2010; 299:H1226–H34
Google Scholar |
Crossref |
Medline |
ISI17. Saito, H, Harada, S. Eldecalcitol replaces endogenous calcitriol but does not fully compensate for its action in vivo. J Steroid Biochem Mol Biol 2014; 144 Pt A:189–96
Google Scholar |
Crossref |
Medline18. Pilz, S, Verheyen, N, Grübler, MR, Tomaschitz, A, März, W. Vitamin D and cardiovascular disease prevention. Nat Rev Cardiol 2016; 13:404–17
Google Scholar |
Crossref |
Medline19. Luk, HH, Ko, JKS, Fung, HS, Cho, CH. Delineation of the protective action of zinc sulfate on ulcerative colitis in rats. Eur J Pharmacol 2002; 443:197–204
Google Scholar |
Crossref |
Medline20. Ward, CM, To, T-H, Pederson, SM. ngsReports: a bioconductor package for managing FastQC reports and other NGS related log files. Bioinformatics 2020; 36:2587–8
Google Scholar |
Crossref |
Medline21. Bolger, AM, Lohse, M, Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–20
Google Scholar |
Crossref |
Medline |
ISI22. Pertea, M, Kim, D, Pertea, GM, Leek, JT, Salzberg, SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and ballgown. Nat Protoc 2016; 11:1650–67
Google Scholar |
Crossref |
Medline23. Liao, Y, Smyth, GK, Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014; 30:923–30
Google Scholar |
Crossref |
Medline |
ISI24. Love, MI, Huber, W, Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15:550
Google Scholar |
Crossref |
Medline |
ISI25. Yu, G, Wang, L-G, Han, Y, He, Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 2012; 16:284–7
Google Scholar |
Crossref |
Medline |
ISI26. Aran, D, Hu, Z, Butte, AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 2017; 18:220
Google Scholar |
Crossref |
Medline27. Caporaso, JG, Kuczynski, J, Stombaugh, J, Bittinger, K, Bushman, FD, Costello, EK, Fierer, N, Peña, AG, Goodrich, JK, Gordon, JI, Huttley, GA, Kelley, ST, Knights, D, Koenig, JE, Ley, RE, Lozupone, CA, McDonald, D, Muegge, BD, Pirrung, M, Reeder, J, Sevinsky, JR, Turnbaugh, PJ, Walters, WA, Widmann, J, Yatsunenko, T, Zaneveld, J, Knight, R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010; 7:335–6
Google Scholar |
Crossref |
Medline |
ISI28. Edgar, RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010; 26:2460–1
Google Scholar |
Crossref |
Medline |
ISI29. McDonald, D, Price, MN, Goodrich, J, Nawrocki, EP, DeSantis, TZ, Probst, A, Andersen, GL, Knight, R, Hugenholtz, P. An improved greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. Isme J 2012; 6:610–8
Google Scholar |
Crossref |
Medline |
ISI30. Langille, MGI, Zaneveld, J, Caporaso, JG, McDonald, D, Knights, D, Reyes, JA, Clemente, JC, Burkepile, DE, Vega Thurber, RL, Knight, R, Beiko, RG, Huttenhower, C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013; 31:814–21
Google Scholar |
Crossref |
Medline |
ISI31. Shannon, P, Markiel, A, Ozier, O, Baliga, NS, Wang, JT, Ramage, D, Amin, N, Schwikowski, B, Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13:2498–504
Google Scholar |
Crossref |
Medline |
ISI32. Wu, S, Liao, AP, Xia, Y, Li, YC, Li, J-D, Sartor, RB, Sun, J. Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine. Am J Pathol 2010; 177:686–97
Google Scholar |
Crossref |
Medline |
ISI33. Leibowitz, A, Volkov, A, Voloshin, K, Shemesh, C, Barshack, I, Grossman, E. Melatonin prevents kidney injury in a high salt diet-induced hypertension model by decreasing oxidative stress. J Pineal Res 2016; 60:48–54
Google Scholar |
Crossref |
Medline34. Van Beusecum, JP, Barbaro, NR, McDowell, Z, Aden, LA, Xiao, L, Pandey, AK, Itani, HA, Himmel, LE, Harrison, DG, Kirabo, A. High salt activates CD11c antigen-presenting cells via SGK (serum glucocorticoid kinase) 1 to promote renal inflammation and salt-sensitive hypertension. Hypertension 2019; 74:555–63
Google Scholar |
Crossref |
Medline35. Smiljanec, K, Lennon, SL. Sodium, hypertension, and the gut: does the gut microbiota go salty? Am J Physiol Heart Circ Physiol 2019; 317:H1173–H82
Google Scholar |
Crossref |
Medline36. Xu, H, Qing, T, Shen, Y, Huang, J, Liu, Y, Li, J, Zhen, T, Xing, K, Zhu, S, Luo, M. RNA-seq analyses the effect of high-salt diet in hypertension. Gene 2018; 677:245–50
Google Scholar |
Crossref |
Medline37. Miranda, PM, De Palma, G, Serkis, V, Lu, J, Louis-Auguste, MP, McCarville, JL, Verdu, EF, Collins, SM, Bercik, P. High salt diet exacerbates colitis in mice by decreasing lactobacillus levels and butyrate production. Microbiome 2018; 6:57
Google Scholar |
Crossref |
Medline38. Mora, JR, Iwata, M, von Andrian, UH. Vitamin effects on the immune system: vitamins a and D take centre stage. Nat Rev Immunol 2008; 8:685–98
Google Scholar |
Crossref |
Medline |
ISI39. Tang, WHW, Kitai, T, Hazen, SL. Gut microbiota in cardiovascular health and disease. Circ Res 2017; 120:1183–96
Google Scholar |
Crossref |
Medline40. Karbach, SH, Schönfelder, T, Brandão, I, Wilms, E, Hörmann, N, Jäckel, S, Schüler, R, Finger, S, Knorr, M, Lagrange, J, Brandt, M, Waisman, A, Kossmann, S, Schäfer, K, Münzel, T, Reinhardt, C, Wenzel, P. Gut microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction. J Am Heart Assoc 2016; 5:e003698
Google Scholar |
Crossref |
Medline41. Kunisawa, J, Kiyono, H. Alcaligenes is commensal bacteria habituating in the Gut-associated lymphoid tissue for the regulation of intestinal IgA responses. Front Immunol 2012; 3:65
Google Scholar |
Crossref |
Medline42. Sinha, SR, Haileselassie, Y, Nguyen, LP, Tropini, C, Wang, M, Becker, LS, Sim, D, Jarr, K, Spear, ET, Singh, G, Namkoong, H, Bittinger, K, Fischbach, MA, Sonnenburg, JL, Habtezion, A. Dysbiosis-Induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 2020; 27:659–70 e5
Google Scholar |
Crossref |
Medline43. Li, F, Han, Y, Cai, X, Gu, M, Sun, J, Qi, C, Goulette, T, Song, M, Li, Z, Xiao, H. Dietary resveratrol attenuated colitis and modulated gut microbiota in dextran sulfate sodium-treated mice. Food Funct 2020; 11:1063–73
Google Scholar |
Crossref |
Medline44. Furusawa, Y, Obata, Y, Fukuda, S, Endo, TA, Nakato, G, Takahashi, D, Nakanishi, Y, Uetake, C, Kato, K, Kato, T, Takahashi, M, Fukuda, NN, Murakami, S, Miyauchi, E, Hino, S, Atarashi, K, Onawa, S, Fujimura, Y, Lockett, T, Clarke, JM, Topping, DL, Tomita, M, Hori, S, Ohara, O, Morita, T, Koseki, H, Kikuchi, J, Honda, K, Hase, K, Ohno, H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504:446–50
Google Scholar |
Comments (0)