Calcitriol ameliorates damage in high-salt diet-induced hypertension: Evidence of communication with the gut–kidney axis

1. Mills, KT, Bundy, JD, Kelly, TN, Reed, JE, Kearney, PM, Reynolds, K, Chen, J, He, J. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 2016; 134:441–50
Google Scholar | Crossref | Medline | ISI2. Fujita, T. Mechanism of salt-sensitive hypertension: focus on adrenal and sympathetic nervous systems. J Am Soc Nephrol 2014; 25:1148–55
Google Scholar | Crossref | Medline3. He, FJ, Tan, M, Ma, Y, MacGregor, GA. Salt reduction to prevent hypertension and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol 2020; 75:632–47
Google Scholar | Crossref | Medline4. Yang, T, Richards, EM, Pepine, CJ, Raizada, MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 2018; 14:442–56
Google Scholar | Crossref | Medline5. Chen, L, He, FJ, Dong, Y, Huang, Y, Wang, C, Harshfield, GA, Zhu, H. Modest sodium reduction increases circulating short-chain fatty acids in untreated hypertensives: a randomized, double-blind, placebo-controlled trial. Hypertension 2020; 76:73–9
Google Scholar | Crossref | Medline6. Abais-Battad, JM, Mattson, DL. Influence of dietary protein on dahl salt-sensitive hypertension: a potential role for gut microbiota. Am J Physiol Regul Integr Comp Physiol 2018; 315:R907–R14
Google Scholar | Crossref | Medline7. Batista, MAC, Braga, DCA, de Moura, SAL, de Souza, GHB, Dos Santos, ODH, Cardoso, LM. Salt-dependent hypertension and inflammation: targeting the gut-brain axis and the immune system with Brazilian green propolis. Inflammopharmacology 2020; 28:1163–82
Google Scholar | Crossref | Medline8. Bier, A, Braun, T, Khasbab, R, Di Segni, A, Grossman, E, Haberman, Y, Leibowitz, A. A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt-sensitive hypertension rat model. Nutrients 2018; 10:1154
Google Scholar | Crossref9. Assa, A, Vong, L, Pinnell, LJ, Avitzur, N, Johnson-Henry, KC, Sherman, PM. Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. J Infect Dis 2014; 210:1296–305
Google Scholar | Crossref | Medline | ISI10. Zeng, Y, Luo, M, Pan, L, Chen, Y, Guo, S, Luo, D, Zhu, L, Liu, Y, Pan, L, Xu, S, Zhang, R, Zhang, C, Wu, P, Ge, L, Noureddin, M, Pandol, SJ, Han, Y-P. Vitamin D signaling maintains intestinal innate immunity and gut microbiota: potential intervention for metabolic syndrome and NAFLD. Am J Physiol Gastrointest Liver Physiol 2020; 318:G542–G53
Google Scholar | Crossref | Medline11. Chang, SH, Chung, Y, Dong, C. Vitamin D suppresses Th17 cytokine production by inducing C/EBP homologous protein (CHOP) expression. J Biol Chem 2010; 285:38751–5
Google Scholar | Crossref | Medline | ISI12. Zold, E, Szodoray, P, Kappelmayer, J, Gaal, J, Csathy, L, Barath, S, Gyimesi, E, Hajas, A, Zeher, M, Szegedi, G, Bodolay, E. Impaired regulatory T-cell homeostasis due to vitamin D deficiency in undifferentiated connective tissue disease. Scand J Rheumatol 2010; 39:490–7
Google Scholar | Crossref | Medline13. Latic, N, Erben, RG. Vitamin D and cardiovascular disease, with emphasis on hypertension, atherosclerosis, and heart failure. Ijms 2020; 21:6483
Google Scholar | Crossref14. Dong, J, Wong, SL, Lau, CW, Lee, HK, Ng, CF, Zhang, L, Yao, X, Chen, ZY, Vanhoutte, PM, Huang, Y. Calcitriol protects renovascular function in hypertension by down-regulating angiotensin II type 1 receptors and reducing oxidative stress. Eur Heart J 2012; 33:2980–90
Google Scholar | Crossref | Medline | ISI15. Chou, C-L, Pang, C-Y, Lee, TJF, Fang, T-C. Beneficial effects of calcitriol on hypertension, glucose intolerance, impairment of endothelium-dependent vascular relaxation, and visceral adiposity in fructose-fed hypertensive rats. PLoS One 2015; 10:e0119843
Google Scholar | Crossref | Medline16. Wong, MSK, Delansorne, R, Man, RYK, Svenningsen, P, Vanhoutte, PM. Chronic treatment with vitamin D lowers arterial blood pressure and reduces endothelium-dependent contractions in the aorta of the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 2010; 299:H1226–H34
Google Scholar | Crossref | Medline | ISI17. Saito, H, Harada, S. Eldecalcitol replaces endogenous calcitriol but does not fully compensate for its action in vivo. J Steroid Biochem Mol Biol 2014; 144 Pt A:189–96
Google Scholar | Crossref | Medline18. Pilz, S, Verheyen, N, Grübler, MR, Tomaschitz, A, März, W. Vitamin D and cardiovascular disease prevention. Nat Rev Cardiol 2016; 13:404–17
Google Scholar | Crossref | Medline19. Luk, HH, Ko, JKS, Fung, HS, Cho, CH. Delineation of the protective action of zinc sulfate on ulcerative colitis in rats. Eur J Pharmacol 2002; 443:197–204
Google Scholar | Crossref | Medline20. Ward, CM, To, T-H, Pederson, SM. ngsReports: a bioconductor package for managing FastQC reports and other NGS related log files. Bioinformatics 2020; 36:2587–8
Google Scholar | Crossref | Medline21. Bolger, AM, Lohse, M, Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–20
Google Scholar | Crossref | Medline | ISI22. Pertea, M, Kim, D, Pertea, GM, Leek, JT, Salzberg, SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and ballgown. Nat Protoc 2016; 11:1650–67
Google Scholar | Crossref | Medline23. Liao, Y, Smyth, GK, Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014; 30:923–30
Google Scholar | Crossref | Medline | ISI24. Love, MI, Huber, W, Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15:550
Google Scholar | Crossref | Medline | ISI25. Yu, G, Wang, L-G, Han, Y, He, Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 2012; 16:284–7
Google Scholar | Crossref | Medline | ISI26. Aran, D, Hu, Z, Butte, AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 2017; 18:220
Google Scholar | Crossref | Medline27. Caporaso, JG, Kuczynski, J, Stombaugh, J, Bittinger, K, Bushman, FD, Costello, EK, Fierer, N, Peña, AG, Goodrich, JK, Gordon, JI, Huttley, GA, Kelley, ST, Knights, D, Koenig, JE, Ley, RE, Lozupone, CA, McDonald, D, Muegge, BD, Pirrung, M, Reeder, J, Sevinsky, JR, Turnbaugh, PJ, Walters, WA, Widmann, J, Yatsunenko, T, Zaneveld, J, Knight, R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010; 7:335–6
Google Scholar | Crossref | Medline | ISI28. Edgar, RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010; 26:2460–1
Google Scholar | Crossref | Medline | ISI29. McDonald, D, Price, MN, Goodrich, J, Nawrocki, EP, DeSantis, TZ, Probst, A, Andersen, GL, Knight, R, Hugenholtz, P. An improved greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. Isme J 2012; 6:610–8
Google Scholar | Crossref | Medline | ISI30. Langille, MGI, Zaneveld, J, Caporaso, JG, McDonald, D, Knights, D, Reyes, JA, Clemente, JC, Burkepile, DE, Vega Thurber, RL, Knight, R, Beiko, RG, Huttenhower, C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013; 31:814–21
Google Scholar | Crossref | Medline | ISI31. Shannon, P, Markiel, A, Ozier, O, Baliga, NS, Wang, JT, Ramage, D, Amin, N, Schwikowski, B, Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13:2498–504
Google Scholar | Crossref | Medline | ISI32. Wu, S, Liao, AP, Xia, Y, Li, YC, Li, J-D, Sartor, RB, Sun, J. Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine. Am J Pathol 2010; 177:686–97
Google Scholar | Crossref | Medline | ISI33. Leibowitz, A, Volkov, A, Voloshin, K, Shemesh, C, Barshack, I, Grossman, E. Melatonin prevents kidney injury in a high salt diet-induced hypertension model by decreasing oxidative stress. J Pineal Res 2016; 60:48–54
Google Scholar | Crossref | Medline34. Van Beusecum, JP, Barbaro, NR, McDowell, Z, Aden, LA, Xiao, L, Pandey, AK, Itani, HA, Himmel, LE, Harrison, DG, Kirabo, A. High salt activates CD11c antigen-presenting cells via SGK (serum glucocorticoid kinase) 1 to promote renal inflammation and salt-sensitive hypertension. Hypertension 2019; 74:555–63
Google Scholar | Crossref | Medline35. Smiljanec, K, Lennon, SL. Sodium, hypertension, and the gut: does the gut microbiota go salty? Am J Physiol Heart Circ Physiol 2019; 317:H1173–H82
Google Scholar | Crossref | Medline36. Xu, H, Qing, T, Shen, Y, Huang, J, Liu, Y, Li, J, Zhen, T, Xing, K, Zhu, S, Luo, M. RNA-seq analyses the effect of high-salt diet in hypertension. Gene 2018; 677:245–50
Google Scholar | Crossref | Medline37. Miranda, PM, De Palma, G, Serkis, V, Lu, J, Louis-Auguste, MP, McCarville, JL, Verdu, EF, Collins, SM, Bercik, P. High salt diet exacerbates colitis in mice by decreasing lactobacillus levels and butyrate production. Microbiome 2018; 6:57
Google Scholar | Crossref | Medline38. Mora, JR, Iwata, M, von Andrian, UH. Vitamin effects on the immune system: vitamins a and D take centre stage. Nat Rev Immunol 2008; 8:685–98
Google Scholar | Crossref | Medline | ISI39. Tang, WHW, Kitai, T, Hazen, SL. Gut microbiota in cardiovascular health and disease. Circ Res 2017; 120:1183–96
Google Scholar | Crossref | Medline40. Karbach, SH, Schönfelder, T, Brandão, I, Wilms, E, Hörmann, N, Jäckel, S, Schüler, R, Finger, S, Knorr, M, Lagrange, J, Brandt, M, Waisman, A, Kossmann, S, Schäfer, K, Münzel, T, Reinhardt, C, Wenzel, P. Gut microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction. J Am Heart Assoc 2016; 5:e003698
Google Scholar | Crossref | Medline41. Kunisawa, J, Kiyono, H. Alcaligenes is commensal bacteria habituating in the Gut-associated lymphoid tissue for the regulation of intestinal IgA responses. Front Immunol 2012; 3:65
Google Scholar | Crossref | Medline42. Sinha, SR, Haileselassie, Y, Nguyen, LP, Tropini, C, Wang, M, Becker, LS, Sim, D, Jarr, K, Spear, ET, Singh, G, Namkoong, H, Bittinger, K, Fischbach, MA, Sonnenburg, JL, Habtezion, A. Dysbiosis-Induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 2020; 27:659–70 e5
Google Scholar | Crossref | Medline43. Li, F, Han, Y, Cai, X, Gu, M, Sun, J, Qi, C, Goulette, T, Song, M, Li, Z, Xiao, H. Dietary resveratrol attenuated colitis and modulated gut microbiota in dextran sulfate sodium-treated mice. Food Funct 2020; 11:1063–73
Google Scholar | Crossref | Medline44. Furusawa, Y, Obata, Y, Fukuda, S, Endo, TA, Nakato, G, Takahashi, D, Nakanishi, Y, Uetake, C, Kato, K, Kato, T, Takahashi, M, Fukuda, NN, Murakami, S, Miyauchi, E, Hino, S, Atarashi, K, Onawa, S, Fujimura, Y, Lockett, T, Clarke, JM, Topping, DL, Tomita, M, Hori, S, Ohara, O, Morita, T, Koseki, H, Kikuchi, J, Honda, K, Hase, K, Ohno, H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504:446–50
Google Scholar |

Comments (0)

No login
gif