1. Zaidi, S, Brueckner, M. Genetics and genomics of congenital heart disease. Circ Res 2017; 120:923–40
Google Scholar |
Crossref |
Medline2. Triedman, JK, Newburger, JW. Trends in congenital heart disease: the next decade. Circulation 2016; 133:2716–33
Google Scholar |
Crossref |
Medline |
ISI3. van der Linde, D, Konings, EE, Slager, MA, Witsenburg, M, Helbing, WA, Takkenberg, JJ, Roos-Hesselink, JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 2011; 58:2241–7
Google Scholar |
Crossref |
Medline |
ISI4. Paladini, D, Palmieri, S, Lamberti, A, Teodoro, A, Martinelli, P, Nappi, C. Characterization and natural history of ventricular septal defects in the fetus. Ultrasound Obstet Gynecol 2000; 16:118–22
Google Scholar |
Crossref |
Medline5. van Nisselrooij, AEL, Teunissen, AKK, Clur, SA, Rozendaal, L, Pajkrt, E, Linskens, IH, Rammeloo, L, van Lith, JMM, Blom, NA, Haak, MC. Why are congenital heart defects being missed? Ultrasound Obstet Gynecol 2020; 55:747–57
Google Scholar |
Crossref |
Medline6. Kamerkar, S, LeBleu, VS, Sugimoto, H, Yang, S, Ruivo, CF, Melo, SA, Lee, JJ, Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 2017; 546:498–503
Google Scholar |
Crossref |
Medline |
ISI7. Thomou, T, Mori, MA, Dreyfuss, JM, Konishi, M, Sakaguchi, M, Wolfrum, C, Rao, TN, Winnay, JN, Garcia-Martin, R, Grinspoon, SK, Gorden, P, Kahn, CR. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 2017; 542:450–5
Google Scholar |
Crossref |
Medline8. Pegtel, DM, Gould, SJ. Exosomes. Annu Rev Biochem 2019; 88:487–514
Google Scholar |
Crossref |
Medline9. Sheller-Miller, S, Radnaa, E, Yoo, JK, Kim, E, Choi, K, Kim, Y, Kim, YN, Richardson, L, Choi, C, Menon, R. Exosomal delivery of NF-kappaB inhibitor delays LPS-induced preterm birth and modulates fetal immune cell profile in mouse models. Sci Adv 2021; 7:eabd3865
Google Scholar |
Crossref |
Medline10. Chang, X, Yao, J, He, Q, Liu, M, Duan, T, Wang, K. Exosomes from women with preeclampsia induced vascular dysfunction by delivering sFlt (soluble Fms-Like tyrosine kinase)-1 and sEng (soluble endoglin) to endothelial cells. Hypertension 2018; 72:1381–90
Google Scholar |
Crossref |
Medline11. Goetzl, L, Darbinian, N, Merabova, N. Noninvasive assessment of fetal central nervous system insult: potential application to prenatal diagnosis. Prenat Diagn 2019; 39:609–15
Google Scholar |
Crossref |
Medline12. Shi, R, Zhao, L, Cai, W, Wei, M, Zhou, X, Yang, G, Yuan, L. Maternal exosomes in diabetes contribute to the cardiac development deficiency. Biochem Biophys Res Commun 2017; 483:602–08
Google Scholar |
Crossref |
Medline13. Sarker, S, Scholz-Romero, K, Perez, A, Illanes, SE, Mitchell, MD, Rice, GE, Salomon, C. Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy. J Transl Med 2014; 12:204
Google Scholar |
Crossref |
Medline14. Record, M. Intercellular communication by exosomes in placenta: a possible role in cell fusion? Placenta 2014; 35:297–302
Google Scholar |
Crossref |
Medline15. Tannetta, D, Masliukaite, I, Vatish, M, Redman, C, Sargent, I. Update of syncytiotrophoblast derived extracellular vesicles in normal pregnancy and preeclampsia. J Reprod Immunol 2017; 119:98–106
Google Scholar |
Crossref |
Medline16. Chen, IH, Xue, L, Hsu, CC, Paez, JS, Pan, L, Andaluz, H, Wendt, MK, Iliuk, AB, Zhu, JK, Tao, WA. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci USA 2017; 114:3175–80
Google Scholar |
Crossref |
Medline17. Cheow, ES, Cheng, WC, Lee, CN, de Kleijn, D, Sorokin, V, Sze, SK. Plasma-derived extracellular vesicles contain predictive biomarkers and potential therapeutic targets for myocardial ischemic (MI) injury. Mol Cell Proteomics 2016; 15:2628–40
Google Scholar |
Crossref |
Medline18. Usta-Atmaca, H, Akbas, F, Karagoz, Y, Piskinpasa, ME. A rarely seen cause for empyema: Leuconostoc mesenteroides. J Infect Dev Ctries 2015; 9:425–7
Google Scholar |
Crossref |
Medline19. Li, H, Wang, Y, Yang, H, Liu, L, Wang, J, Zheng, N. Lactoferrin induces the synthesis of vitamin B6 and protects HUVEC functions by activating PDXP and the PI3K/AKT/ERK1/2 pathway. Ijms 2019; 20:587
Google Scholar |
Crossref20. Miotto, M, Di Rienzo, L, Bò, L, Boffi, A, Ruocco, G, Milanetti, E. Molecular mechanisms behind anti SARS-CoV-2 action of lactoferrin. Front Mol Biosci 2021; 8:607443
Google Scholar |
Crossref |
Medline21. Rak, K, Kornafel, D, Mazurek, D, Bronkowska, M. Lactoferrin level in maternal serum is related to birth anthropometry – an evidence for an indirect biomarker of intrauterine homeostasis? The journal of maternal-fetal & neonatal medicine: the official journal of the European association of perinatal medicine, the federation of Asia and Oceania perinatal societies. Int Soc Perinatal Obstet 2019; 32:4043–50
Google Scholar22. Perez-Riverol, Y, Csordas, A, Bai, J, Bernal-Llinares, M, Hewapathirana, S, Kundu, DJ, Inuganti, A, Griss, J, Mayer, G, Eisenacher, M, Perez, E, Uszkoreit, J, Pfeuffer, J, Sachsenberg, T, Yilmaz, S, Tiwary, S, Cox, J, Audain, E, Walzer, M, Jarnuczak, AF, Ternent, T, Brazma, A, Vizcaino, JA. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 2019; 47:D442–D50
Google Scholar |
Crossref |
Medline
Comments (0)