Neutrophil-to-lymphocyte ratio is prognostic factor of prolonged pleural effusion after pediatric cardiac surgery

1. Chan, EH, Russell, JL, Williams, WG, et al. Postoperative chylothorax after cardiothoracic surgery in children. Ann Thorac Surg 2005; 80: 1864–1870.
Google Scholar | Crossref | Medline | ISI2. Zuluaga, MT. Chylothorax after surgery for congenital heart disease. Curr Opin Pediatr 2012; 24: 291–294.
Google Scholar | Crossref | Medline | ISI3. Mery, CM, Moffett, BS, Khan, MS, et al. Incidence and treatment of chylothorax after cardiac surgery in children: analysis of a large multi-institution database. J Thorac Cardiovasc Surg 2014; 147: 678–686.
Google Scholar | Crossref | Medline4. Nadolski, G. Nontraumatic chylothorax: diagnostic algorithm and treatment options. Tech Vasc Interv Radiol 2016; 19: 286–290.
Google Scholar | Crossref | Medline5. Schroth, M, Meißner, U, Cesnjevar, R, et al. Plasmatic [corrected] factor XIII reduces severe pleural effusion in children after open-heart surgery. Pediatr Cardiol 2006; 27: 56–60.
Google Scholar | Crossref | Medline6. Rimensberger, PC, Müller-Schenker, B, Kalangos, A, et al. Treatment of a persistent postoperative chylothorax with somatostatin. Ann Thorac Surg 1998; 66: 253–254.
Google Scholar | Crossref | Medline | ISI7. Muniz, G, Hidalgo-Campos, J, Valdivia-Tapia, MDC, et al. Successful management of chylothorax with etilefrine: case report in 2 pediatric patients. Pediatrics 2018; 141: e20163309.
Google Scholar | Crossref | Medline8. Guillem, P, Papachristos, I, Peillon, C, et al. Etilefrine use in the management of post-operative chyle leaks in thoracic surgery. Interact Cardiovasc Thorac Surg 2004; 3: 156–160.
Google Scholar | Crossref | Medline9. Savla, JJ, Itkin, M, Rossano, JW, et al. Post-operative chylothorax in patients with congenital heart disease. J Am Coll Cardiol 2017; 69: 2410–2422.
Google Scholar | Crossref | Medline10. Luo, Q, Zhao, W, Su, Z, et al. Risk factors for prolonged pleural effusion following total cavopulmonary connection surgery: 9 years' experience at Fuwai hospital. Front Pediatr 2019; 7: 456.
Google Scholar | Crossref | Medline11. Lo Rito, M, Al-Radi, OO, Saedi, A, et al. Chylothorax and pleural effusion in contemporary extracardiac fenestrated fontan completion. J Thorac Cardiovasc Surg 2018; 155: 2069–2077.
Google Scholar | Crossref | Medline12. Kim, G, Ko, H, Byun, JH, et al. Risk factors for prolonged pleural effusion after extracardiac fontan operation. Pediatr Cardiol 2019; 40: 1545–1552.
Google Scholar | Crossref | Medline13. Talwar, S, Agarwala, S, Mittal, CM, et al. Pleural effusions in children undergoing cardiac surgery. Ann Pediatr Cardiol 2010; 3: 58–64.
Google Scholar | Crossref | Medline14. Raatz, A, Schöber, M, Zant, R, et al. Risk factors for chylothorax and persistent serous effusions after congenital heart surgery. Eur J Cardiothorac Surg 2019; 56: 1162–1169.
Google Scholar | Crossref | Medline15. Perry, T, Bora, K, Bakar, A, et al. Non-surgical risk factors for the development of chylothorax in children after cardiac surgery – does fluid matter? Pediatr Cardiol 2020; 41: 41194–41200.
Google Scholar16. Yao, X, Abd Hamid, M, Sundaralingam, A, et al. Clinical perspective and practices on pleural effusions in chronic systemic inflammatory diseases. Breathe (Sheff) 2020; 16: 200203.
Google Scholar | Crossref | Medline17. Gupta, M, Johann-Liang, R, Sison, CP, et al. Relation of early pleural effusion after pediatric open heart surgery to cardiopulmonary bypass time and systemic inflammation as measured by serum interleukin-6. Am J Cardiol 2001; 87: 1220–1223.
Google Scholar | Crossref | Medline | ISI18. Papa, A, Emdin, M, Passino, C, et al. Predictive value of elevated neutrophil-lymphocyte ratio on cardiac mortality in patients with stable coronary artery disease. Clin Chim Acta 2008; 395: 27–31.
Google Scholar | Crossref | Medline | ISI19. Sawant, AC, Adhikari, P, Narra, SR, et al. Neutrophil to lymphocyte ratio predicts short- and long-term mortality following revascularization therapy for ST elevation myocardial infarction. Cardiol J 2014; 21: 500–508.
Google Scholar | Crossref | Medline | ISI20. Paquissi, FC. The role of inflammation in cardiovascular diseases: the predictive value of neutrophil-lymphocyte ratio as a marker in peripheral arterial disease. Ther Clin Risk Manag 2016; 12: 851–860.
Google Scholar | Crossref | Medline21. Testoni, D, Hornik, CP, Neely, ML, et al. Best pharmaceuticals for children act pediatric trials network administrative core committee. Safety of octreotide in hospitalized infants. Early Hum Dev 2015; 91: 387–392.
Google Scholar | Crossref | Medline22. Corifact (factor XIII concentrate) dosing, indications, interactions, adverse effects, and more, https://reference.medscape.com/drug/corifact-factor-xiii-concentrate-human-999624 (accesssed 8 May 2020).
Google Scholar23. Kanda . Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 2013; 48: 452–458.
Google Scholar | Crossref | Medline | ISI24. Weedle, RC, Da Costa, M, Veerasingam, D, et al. The use of neutrophil lymphocyte ratio to predict complications post cardiac surgery. Ann Transl Med 2019; 7: 778.
Google Scholar | Crossref | Medline25. Forget, P, Khalifa, C, Defour, JP, et al. What is the normal value of the neutrophil-to-lymphocyte ratio? BMC Res Notes 2017; 10: 12.
Google Scholar | Crossref | Medline26. Azab, B, Camacho-Rivera, M, Taioli, E. Average values and racial differences of neutrophil lymphocyte ratio among a nationally representative sample of United States subjects. PLoS One 2014; 9: e112361.
Google Scholar | Crossref | Medline | ISI27. Goldstein, SA, Beshish, AG, Bush, LB, et al. Analysis of inflammatory cytokines in postoperative fontan pleural drainage. Pediatr Cardiol 2019; 40: 744–772.
Google Scholar | Crossref | Medline28. Sigurdardottir, S, Zapadka, TE, Lindstrom, SI, et al. Diabetes-mediated IL-17A enhances retinal inflammation, oxidative stress, and vascular permeability. Cell Immunol 2019; 341: 103921.
Google Scholar | Crossref | Medline29. Rahman, MT, Ghosh, C, Hossain, M, et al. IFN-γ, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: relevance for neuro-inflammatory diseases. Biochem Biophys Res Commun 2018; 507: 274–329.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif