1. Kamada, R, Kudoh, F, Ito, S, Tani, I, Janairo, JIB, Omichinski, JG, Sakaguchi, K. Metal-dependent Ser/Thr protein phosphatase PPM family: evolution, structures, diseases and inhibitors. Pharmacol Ther 2020; 215:107622
Google Scholar |
Crossref |
Medline2. Krzyzosiak, A, Sigurdardottir, A, Luh, L, Carrara, M, Das, I, Schneider, K, Bertolotti, A. Target-based discovery of an inhibitor of the regulatory phosphatase PPP1R15B. Cell 2018; 174:1216–28 e19
Google Scholar |
Crossref |
Medline3. Lammers, T, Lavi, S. Role of type 2C protein phosphatases in growth regulation and in cellular stress signaling. Crit Rev Biochem Mol Biol 2007; 42:437–61
Google Scholar |
Crossref |
Medline4. Das, AK, Helps, NR, Cohen, PT, Barford, D. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 a resolution. Embo J 1996; 15:6798–809
Google Scholar |
Crossref |
Medline5. Singh, A, Pandey, A, Srivastava, AK, Tran, LS, Pandey, GK. Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Crit Rev Biotechnol 2016; 36:1023–35
Google Scholar |
Crossref |
Medline6. Pan, C, Liu, HD, Gong, Z, Yu, X, Hou, XB, Xie, DD, Zhu, XB, Li, HW, Tang, JY, Xu, YF, Yu, JQ, Zhang, LY, Fang, H, Xiao, KH, Chen, YG, Wang, JY, Pang, Q, Chen, W, Sun, JP. Cadmium is a potent inhibitor of PPM phosphatases and targets the M1 binding site. Sci Rep 2013; 3:2333
Google Scholar |
Crossref |
Medline7. Debnath, S, Kosek, D, Tagad, HD, Durell, SR, Appella, DH, Acevedo, R, Grishaev, A, Dyda, F, Appella, E, Mazur, SJ. A trapped human PPM1A-phosphopeptide complex reveals structural features critical for regulation of PPM protein phosphatase activity. J Biol Chem 2018; 293:7993–8008
Google Scholar |
Crossref |
Medline8. Jackson, MD, Fjeld, CC, Denu, JM. Probing the function of conserved residues in the serine/threonine phosphatase PP2Calpha. Biochemistry 2003; 42:8513–21
Google Scholar |
Crossref |
Medline9. Chuderland, D, Dvashi, Z, Kaplan-Kraicer, R, Ben-Meir, D, Shalgi, R, Lavi, S. De novo synthesis of protein phosphatase 1A, magnesium dependent, alpha isoform (PPM1A) during oocyte maturation. Cell Mol Biol Lett 2012; 17:433–45
Google Scholar |
Crossref |
Medline10. Zhang, B, Zhou, Z, Lin, H, Lv, X, Fu, J, Lin, P, Zhu, C, Wang, H. Protein phosphatase 1A (PPM1A) is involved in human cytotrophoblast cell invasion and migration. Histochem Cell Biol 2009; 132:169–79
Google Scholar |
Crossref |
Medline11. Shohat, M, Ben-Meir, D, Lavi, S. Protein phosphatase magnesium dependent 1A (PPM1A) plays a role in the differentiation and survival processes of nerve cells. PloS One 2012; 7:e32438
Google Scholar |
Crossref |
Medline12. Kim, JH, Lee, J, Oh, B, Kimm, K, Koh, I. Prediction of phosphorylation sites using SVMs. Bioinformatics 2004; 20:3179–84
Google Scholar |
Crossref |
Medline13. Lifschitz-Mercer, B, Sheinin, Y, Ben-Meir, D, Bramante-Schreiber, L, Leider-Trejo, L, Karby, S, Smorodinsky, NI, Lavi, S. Protein phosphatase 2Calpha expression in normal human tissues: an immunohistochemical study. Histochem Cell Biol 2001; 116:31–9
Google Scholar |
Crossref |
Medline14. Liu, YJ, Chern, Y. AMPK-mediated regulation of neuronal metabolism and function in brain diseases. J Neurogenet 2015; 29:50–8
Google Scholar |
Crossref |
Medline15. Chen, L, Jiao, ZH, Zheng, LS, Zhang, YY, Xie, ST, Wang, ZX, Wu, JW. Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature 2009; 459:1146–9
Google Scholar |
Crossref |
Medline16. Davies, SP, Helps, NR, Cohen, PT, Hardie, DG. 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett 1995; 377:421–5
Google Scholar |
Crossref |
Medline |
ISI17. Chida, T, Ando, M, Matsuki, T, Masu, Y, Nagaura, Y, Takano-Yamamoto, T, Tamura, S, Kobayashi, T. N-Myristoylation is essential for protein phosphatases PPM1A and PPM1B to dephosphorylate their physiological substrates in cells. Biochem J 2013; 449:741–9
Google Scholar |
Crossref |
Medline18. Hanada, M, Kobayashi, T, Ohnishi, M, Ikeda, S, Wang, H, Katsura, K, Yanagawa, Y, Hiraga, A, Kanamaru, R, Tamura, S. Selective suppression of stress-activated protein kinase pathway by protein phosphatase 2C in mammalian cells. FEBS Lett 1998; 437:172–6
Google Scholar |
Crossref |
Medline19. Dvashi, Z, Sar Shalom, H, Shohat, M, Ben-Meir, D, Ferber, S, Satchi-Fainaro, R, Ashery-Padan, R, Rosner, M, Solomon, AS, Lavi, S. Protein phosphatase magnesium dependent 1A governs the wound healing-inflammation-angiogenesis cross talk on injury. Am J Pathol 2014; 184:2936–50
Google Scholar |
Crossref |
Medline20. Schaaf, K, Smith, SR, Duverger, A, Wagner, F, Wolschendorf, F, Westfall, AO, Kutsch, O, Sun, J. Mycobacterium tuberculosis exploits the PPM1A signaling pathway to block host macrophage apoptosis. Sci Rep 2017; 7:42101
Google Scholar |
Crossref |
Medline21. Takekawa, M, Maeda, T, Saito, H. Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. Embo J 1998; 17:4744–52
Google Scholar |
Crossref |
Medline22. Zhou, B, Wang, ZX, Zhao, Y, Brautigan, DL, Zhang, ZY. The specificity of extracellular signal-regulated kinase 2 dephosphorylation by protein phosphatases. J Biol Chem 2002; 277:31818–25
Google Scholar |
Crossref |
Medline23. Morgan, DO. Principles of CDK regulation. Nature 1995; 374:131–4
Google Scholar |
Crossref |
Medline |
ISI24. Cheng, A, Kaldis, P, Solomon, MJ. Dephosphorylation of human cyclin-dependent kinases by protein phosphatase type 2C alpha and beta 2 isoforms. J Biol Chem 2000; 275:34744–9
Google Scholar |
Crossref |
Medline |
ISI25. Cheng, A, Ross, KE, Kaldis, P, Solomon, MJ. Dephosphorylation of cyclin-dependent kinases by type 2C protein phosphatases. Genes Dev 1999; 13:2946–57
Google Scholar |
Crossref |
Medline26. Wang, Y, Dow, EC, Liang, YY, Ramakrishnan, R, Liu, H, Sung, TL, Lin, X, Rice, AP. Phosphatase PPM1A regulates phosphorylation of thr-186 in the Cdk9 T-loop. J Biol Chem 2008; 283:33578–84
Google Scholar |
Crossref |
Medline27. Budhiraja, S, Ramakrishnan, R, Rice, AP. Phosphatase PPM1A negatively regulates P-TEFb function in resting CD4(+) T cells and inhibits HIV-1 gene expression. Retrovirology 2012; 9:52
Google Scholar |
Crossref |
Medline28. Vogelstein, B, Lane, D, Levine, AJ. Surfing the p53 network. Nature 2000; 408:307–10
Google Scholar |
Crossref |
Medline |
ISI29. Ofek, P, Ben-Meir, D, Kariv-Inbal, Z, Oren, M, Lavi, S. Cell cycle regulation and p53 activation by protein phosphatase 2C alpha. J Biol Chem 2003; 278:14299–305
Google Scholar |
Crossref |
Medline30. Bierie, B, Moses, HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006; 6:506–20
Google Scholar |
Crossref |
Medline |
ISI31. Lin, X, Duan, X, Liang, YY, Su, Y, Wrighton, KH, Long, J, Hu, M, Davis, CM, Wang, J, Brunicardi, FC, Shi, Y, Chen, YG, Meng, A, Feng, XH. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell 2006; 125:915–28
Google Scholar |
Crossref |
Medline32. Wang, F, Wang, H, Sun, L, Niu, C, Xu, J. TRIM59 inhibits PPM1A through ubiquitination and activates TGF-β/Smad signaling to promote the invasion of ectopic endometrial stromal cells in endometriosis. Am J Physiol Cell Physiol 2020; 319:C392–c401
Google Scholar |
Crossref |
Medline33. Nusse, R, Varmus, HE. Wnt genes. Cell 1992; 69:1073–87
Google Scholar |
Crossref |
Medline34. Strovel, ET, Wu, D, Sussman, DJ. Protein phosphatase 2Calpha dephosphorylates axin and activates LEF-1-dependent transcription. J Biol Chem 2000; 275:2399–403
Google Scholar |
Crossref |
Medline35. Lu, X, Yarbrough, WG. Negative regulation of RelA phosphorylation: emerging players and their roles in cancer. Cytokine Growth Factor Rev 2015; 26:7–13
Google Scholar |
Crossref |
Medline36. Sun, W, Yu, Y, Dotti, G, Shen, T, Tan, X, Savoldo, B, Pass, AK, Chu, M, Zhang, D, Lu, X, Fu, S, Lin, X, Yang, J. PPM1A and PPM1B act as IKKbeta phosphatases to terminate TNFalpha-induced IKKbeta-NF-kappaB activation. Cell Signal 2009; 21:95–102
Google Scholar |
Crossref |
Medline37. Tang, J, Goldschmeding, R, Samarakoon, R, Higgins, PJ. Protein phosphatase Mg(2+)/Mn(2+) dependent-1A and PTEN deregulation in renal fibrosis: novel mechanisms and co-dependency of expression. Faseb J 2020; 34:2641–56
Google Scholar |
Crossref |
Medline38. Samarakoon, R, Rehfuss, A, Khakoo, NS, Falke, LL, Dobberfuhl, AD, Helo, S, Overstreet, JM, Goldschmeding, R, Higgins, PJ. Loss of expression of protein phosphatase magnesium-dependent 1A during kidney injury promotes fibrotic maladaptive repair. Faseb J 2016; 30:3308–20
Google Scholar |
Crossref |
Medline39. Zhou, J, Lan, Q, Li, W, Yang, L, You, J, Zhang, YM, Ni, W. Tripartite motif protein 52 (TRIM52) promoted fibrosis in LX-2 cells through PPM1A-mediated Smad2/3 pathway. Cell Biol Int 2019. DOI: 10.1002/cbin.11206
Google Scholar40. Lee, JE, Lee, JS, Hwang, SH. Microarray for genes associated with signal transduction in diabetic OLETF keratocytes. Korean J Ophthalmol 2007; 21:111–9
Google Scholar |
Crossref |
Medline41. Tasdelen, I, van Beekum, O, Gorbenko, O, Fleskens, V, van den Broek, NJ, Koppen, A, Hamers, N, Berger, R, Coffer, PJ, Brenkman, AB, Kalkhoven, E. The serine/threonine phosphatase PPM1B (PP2Cβ) selectively modulates PPARγ activity. Biochem J 2013; 451:45–53
Google Scholar |
Crossref |
Medline42. Choi, JH, Banks, AS, Estall, JL, Kajimura, S, Boström, P, Laznik, D, Ruas, JL, Chalmers, MJ, Kamenecka, TM, Blüher, M, Griffin, PR, Spiegelman, BM. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 2010; 466:451–6
Google Scholar |
Crossref |
Medline |
ISI43. Banks, AS, McAllister, FE, Camporez, JP, Zushin, PJ, Jurczak, MJ, Laznik-Bogoslavski, D, Shulman, GI, Gygi, SP, Spiegelman, BM. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ. Nature 2015; 517:391–5
Google Scholar |
Crossref |
Medline44. Khim, KW, Choi, SS, Jang, HJ, Lee, YH, Lee, E, Hyun, JM, Eom, HJ, Yoon, S, Choi, JW, Park, TE, Nam, D, Choi, JH. PPM1A controls diabetic gene programming through directly dephosphorylating PPARγ at Ser273. Cells 2020; 9:343
Google Scholar |
Crossref45. Li, Z, Liu, G, Sun, L, Teng, Y, Guo, X, Jia, J, Sha, J, Yang, X, Chen, D, Sun, Q. PPM1A regulates antiviral signaling by antagonizing TBK1-mediated STING phosphorylation and aggregation. PLoS Pathog 2015; 11:e1004783
Google Scholar |
Crossref |
Medline46. Xiang, W, Zhang, Q, Lin, X, Wu, S, Zhou, Y, Meng, F, Fan, Y, Shen, T, Xiao, M, Xia, Z, Zou, J, Feng, XH, Xu, P. PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1. Sci Adv 2016; 2:e1501889
Google Scholar |
Crossref |
Medline47. Sun, J, Schaaf, K, Duverger, A, Wolschendorf, F, Speer, A, Wagner, F, Niederweis, M, Kutsch, O. Protein phosphatase, Mg2+/Mn2+-dependent 1A controls the innate antiviral and antibacterial response of macrophages during HIV-1 and Mycobacterium tuberculosis infection. Oncotarget 2016; 7:15394–409
Comments (0)