Iron-based phosphorus chelator: Risk of iron deposition and action on bone metabolism in uremic rats

1. Levin, A, Bakris, GL, Molitch, M, Smulders, M, Tian, J, Williams, LA, Andress, DL. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 2007; 71:31–38
Google Scholar | Crossref | Medline | ISI2. Górriz, JL, Molina, P, Bover, J, Barril, G, Martín-De Francisco, AL, Caravaca, F, Hervás, J, Piñera, C, Escudero, V, Molinero, LM. Characteristics of bone mineral metabolism in patients with stage 3-5 chronic kidney disease not on dialysis: results of the OSERCE study. Nefrologia 2013; 33:46–60
Google Scholar | Medline3. Craver, L, Marco, MP, Martinez, I, Rue, M, Borras, M, Martin, ML, Sarro, F, Valdivielso, JM, Fernandez, E. Mineral metabolism parameters throughout chronic kidney disease stages 1-5 – achievement of K/DOQI target ranges. Nephrol Dial Transplant 2007; 22:1171–76
Google Scholar | Crossref | Medline | ISI4. Liabeuf, S, Mccullough, K, Young, EW, Pisoni, R, Zee, J, Reichel, H, Pecoits-Filho, R, Port, FK, Stengel, B, Csomor, PA, Metzger, M, Robinson, B, Massy, ZA. International variation in the management of mineral bone disorder in patients with chronic kidney disease: results from CKDopps. Bone 2019; 129:115058
Google Scholar | Crossref | Medline5. Naves-Diaz, M, Passlick-Deetjen, J, Guinsburg, A, Marelli, C, Fernandez-Martin, JL, Rodriguez-Puyol, D, Cannata-Andia, JB. Calcium, phosphorus, PTH and death rates in a large sample of dialysis patients from Latin America. The CORES study. Nephrol Dial Transplant 2011; 26:1938–47
Google Scholar | Crossref | Medline | ISI6. Ahmadi, N, Mao, SS, Hajsadeghi, F, Arnold, B, Kiramijyan, S, Gao, Y, Flores, F, Azen, S, Budoff, M. The relation of low levels of bone mineral density with coronary artery calcium and mortality. Osteoporos Int 2018; 29:1609–16
Google Scholar | Crossref | Medline7. Sekercioglu, N, Angeliki Veroniki, A, Thabane, L, Busse, JW, Akhtar-Danesh, N, Iorio, A, Cruz Lopes, L, Guyatt, GH. Effects of different phosphate lowering strategies in patients with CKD on laboratory outcomes: a systematic review and NMA. PLoS One 2017; 12:e0171028
Google Scholar | Crossref | Medline8. Barreto, FC, Barreto, DV, Massy, ZA, Drueke, TB. Strategies for phosphate control in patients with CKD. Kidney Int Rep 2019; 4:1043–56
Google Scholar | Crossref | Medline9. Elder, GJ, Center, J. The role of calcium and non calcium-based phosphate binders in chronic kidney disease. Nephrology (Carlton) 2017; 22: 42–46
Google Scholar | Crossref | Medline10. Soriano, S, Ojeda, R, Rodriguez, M, Almaden, Y, Rodriguez, M, Martin-Malo, A, Aljama, P. The effect of phosphate binders, calcium and lanthanum carbonate on FGF23 levels in chronic kidney disease patients. Clin Nephrol 2013; 80:17–22
Google Scholar | Crossref | Medline11. Koiwa, F, Kazama, JJ, Tokumoto, A, Onoda, N, Kato, H, Okada, T, Nii-Kono, T, Fukagawa, M, Shigematsu, T; Group RODCR . Sevelamer hydrochloride and calcium bicarbonate reduce serum fibroblast growth factor 23 levels in dialysis patients. Therapher Dial 2005; 9:336–39
Google Scholar | Crossref | Medline | ISI12. Gutiérrez, OM, Mannstadt, M, Isakova, T, Rauh-Hain, JA, Tamez, H, Shah, A, Smith, K, Lee, H, Thadhani, R, Jüppner, H, Wolf, M. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008; 359:584–92
Google Scholar | Crossref | Medline | ISI13. Isakova, T, Cai, X, Lee, J, Xie, D, Wang, X, Mehta, R, Allen, NB, Scialla, JJ, Pencina, MJ, Anderson, AH, Talierco, J, Chen, J, Fischer, MJ, Steigerwalt, SP, Leonard, MB, Hsu, CY, De Boer, IH, Kusek, JW, Feldman, HI ,Wolf M; on behalf of Chronic Renal Insufficiency Cohort Study I . Longitudinal FGF23 trajectories and mortality in patients with CKD. J Am Soc Nephrol 2018; 29:579–90
Google Scholar | Crossref | Medline14. Nastou, D, Fernandez-Fernandez, B, Elewa, U, Gonzalez-Espinoza, L, Gonzalez-Parra, E, Sanchez-Nino, MD, Ortiz, A. Next-generation phosphate binders: focus on iron-based binders. Drugs 2014; 74:863–77
Google Scholar | Crossref | Medline | ISI15. Yokoyama, K, Hirakata, H, Akiba, T, Fukagawa, M, Nakayama, M, Sawada, K, Kumagai, Y, Block, GA. Ferric citrate hydrate for the treatment of hyperphosphatemia in nondialysis-dependent CKD. CJASN 2014; 9:543–52
Google Scholar | Crossref | Medline | ISI16. Koiwa, F, Terao, A. Dose-response efficacy and safety of PA21 in Japanese hemodialysis patients with hyperphosphatemia: a randomized, placebo-controlled, double-blind, phase II study. Clin Exp Nephrol 2017; 21:513–22
Google Scholar | Crossref | Medline17. Koiwa, F, Yokoyama, K, Fukagawa, M, Terao, A, Akizawa, T. Efficacy and safety of sucroferric oxyhydroxide compared with sevelamer hydrochloride in Japanese haemodialysis patients with hyperphosphataemia: a randomized, open-label, multicentre, 12-week phase III study. Nephrology (Carlton) 2017; 22:293–300
Google Scholar | Crossref | Medline18. Floege, J, Covic, AC, Ketteler, M, Mann, JF, Rastogi, A, Spinowitz, B, Chong, EM, Gaillard, S, Lisk, LJ, Sprague, SM; Sucroferric Oxyhydroxide Study Group . Long-term effects of the iron-based phosphate binder, sucroferric oxyhydroxide, in dialysis patients. Nephrol Dial Transplant 2015; 30:1037–46
Google Scholar | Crossref | Medline | ISI19. Iguchi, A, Kazama, JJ, Yamamoto, S, Yoshita, K, Watanabe, Y, Iino, N, Narita, I. Administration of ferric citrate hydrate decreases circulating FGF23 levels independently of serum phosphate levels in hemodialysis patients with iron deficiency. Nephron 2015; 131:161–66
Google Scholar | Crossref | Medline20. Phan, O, Maillard, M, Peregaux, C, Mordasini, D, Stehle, JC, Funk, F, Burnier, M. PA21, a new iron-based noncalcium phosphate binder, prevents vascular calcification in chronic renal failure rats. J Pharmacol Exp Ther 2013; 346:281–89
Google Scholar | Crossref | Medline21. Ketteler, M, Sprague, SM, Covic, AC, Rastogi, A, Spinowitz, B, Rakov, V, Walpen, S, Floege, J. Effects of sucroferric oxyhydroxide and sevelamer carbonate on chronic kidney disease-mineral bone disorder parameters in dialysis patients. Nephrol Dial Transplant 2019; 34:1163–70
Google Scholar | Crossref | Medline22. Shima, H, Miya, K, Okada, K, Minakuchi, J, Kawashima, S. Sucroferric oxyhydroxide decreases serum phosphorus level and fibroblast growth factor 23 and improves renal anemia in hemodialysis patients. BMC Res Notes 2018; 11:363
Google Scholar | Crossref | Medline23. Yaguchi, A, Tatemichi, S, Takeda, H, Kobayashi, M. PA21, a novel phosphate binder, improves renal osteodystrophy in rats with chronic renal failure. PLoS One 2017; 12:e0180430
Google Scholar | Crossref | Medline24. Custódio, MR, Elias, RM, Velasquez, WD, Dos Reis, LM, Oliveira, IB, Moyses, RMA, Carvalho, AB, Jorgetti, V. The unexpected presence of iron in bone biopsies of hemodialysis patients. Int Urol Nephrol 2018; 50:1907–12
Google Scholar | Crossref | Medline25. Lewis, JB, Sika, M, Koury, MJ, Chuang, P, Schulman, G, Smith, MT, Whittier, FC, Linfert, DR, Galphin, CM, Athreya, BP, Nossuli, AK, Chang, IJ, Blumenthal, SS, Manley, J, Zeig, S, Kant, KS, Olivero, JJ, Greene, T, Dwyer, JP; Collaborative Study Group . Ferric citrate controls phosphorus and delivers iron in patients on dialysis. Jasn 2015; 26:493–503
Google Scholar | Crossref26. Iida, A, Matsushita, M, Ohta, T, Yamada, T. Conventional and novel impacts of ferric citrate on iron deficiency anemia and phosphorus metabolism in rats. J Vet Med Sci 2020; 82:379–86
Google Scholar | Crossref | Medline27. Baxter, J, Shimizu, F, Takiguchi, Y, Wada, M, Yamaguchi, T. Effect of iron(III) chitosan intake on the reduction of serum phosphorus in rats. J Pharm Pharmacol 2000; 52:863–74
Google Scholar | Crossref | Medline28. Burger, C, Valcarenghi, D, Sandri, S, Rodrigues, CA. Cross-linking chitosan-Fe(III), an oral phosphate binder: studies in vitro and in vivo. Int J Pharm 2001; 223:29–33
Google Scholar | Crossref | Medline29. Schoninger, LM, Dall'oglio, RC, Sandri, S, Rodrigues, CA, Burger, C. Chitosan iron(III) reduces phosphorus levels in alloxan diabetes-induced rats with signs of renal failure development. Basic Clin Pharmacol Toxicol 2010; 106:467–71
Google Scholar | Crossref | Medline30. Do Carmo, WB, Castro, BBA, Rodrigues, CA, Custódio, MR, Sanders-Pinheiro, H. Chitosan-Fe (III) complex as a phosphate chelator in uraemic rats: a novel treatment option. Basic Clin Pharmacol Toxicol 2018; 122:120–25
Google Scholar | Crossref | Medline31. De Castro, BBA, Do Carmo, WB, De Albuquerque Suassuna, PG, Carminatti, M, Brito, JB, Dominguez, WV, De Oliveira, IB, Jorgetti, V, Custodio, MR, Sanders-Pinheiro, H. Effect of cross-linked chitosan iron (III) on vascular calcification in uremic rats. Exp Biol Med (Maywood) 2018; 243:796–802
Google Scholar | SAGE Journals | ISI32. Malberti, F, Surian, M, Poggio, F, Minoia, C, Salvadeo, A. Efficacy and safety of long-term treatment with calcium carbonate as a phosphate binder. Am J Kidney Dis 1988; 12:487–91
Google Scholar | Crossref | Medline33. Yaguchi, A, Akahane, K, Tsuchioka, K, Yonekubo, S, Yamamoto, S, Tamai, Y, Tatemichi, S, Takeda, H. A comparison between the combined effect of calcium carbonate with sucroferric oxyhydroxide and other phosphate binders: an in vitro and in vivo experimental study. BMC Nephrol 2019; 20:465
Google Scholar | Crossref | Medline34. Recker, RR, Kimmel, DB, Dempster, D, Weinstein, RS, Wronski, TJ, Burr, DB. Issues in modern bone histomorphometry. Bone 2011; 49:955–64
Google Scholar | Crossref | Medline | ISI35. Bijvoet, OL. Relation of plasma phosphate concentration to renal tubular reabsorption of phosphate. Clin Sci 1969; 37:23–36
Google Scholar | Medline | ISI36. Dempster, DW, Compston, JE, Drezner, MK, Glorieux, FH, Kanis, JA, Malluche, H, Meunier, PJ, Ott, SM, Recker, RR, Parfitt, AM. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 2013; 28:2–17
Google Scholar | Crossref | Medline | ISI37. Ketteler, M, Block, GA, Evenepoel, P, Fukagawa, M, Herzog, CA, Mccann, L, Moe, SM, Shroff, R, Tonelli, MA, Toussaint, ND, Vervloet, MG, Leonard, MB. Executive summary of the 2017 KDIGO chronic kidney Disease-Mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int 2017; 92:26–36
Google Scholar | Crossref | Medline38. Lehmann, G, Ott, U, Kaemmerer, D, Schuetze, J, Wolf, G. Bone histomorphometry and biochemical markers of bone turnover in patients with chronic kidney disease stages 3 - 5. Clin Nephrol 2008; 70:296–305
Google Scholar | Crossref | Medline39. Gal-Moscovici, A, Popovtzer, MM. New worldwide trends in presentation of renal osteodystrophy and its relationship to parathyroid hormone levels. Clin Nephrol 2005; 63:284–89
Google Scholar | Crossref | Medline40. Iguchi, A, Yamamoto, S, Yamazaki, M, Tasaki, K, Suzuki, Y, Kazama, JJ, Narita, I. Effect of ferric citrate hydrate on FGF23 and PTH levels in patients with non-dialysis-dependent chronic kidney disease with normophosphatemia and iron deficiency. Clin Exp Nephrol 2018; 22:789–96
Google Scholar | Crossref | Medline41. Cozzolino, M, Funk, F, Rakov, V, Phan, O, Teitelbaum, I. Preclinical pharmacokinetics, pharmacodynamics and safety of sucroferric oxyhydroxide. Cdm 2014; 15:953–65
Google Scholar | Crossref42. Geisser, P, Philipp, E. PA21: a novel phosphate binder for the treatment of hyperphosphatemia in chronic kidney disease. Clin Nephrol 2010; 74:4–11
Google Scholar | Crossref | Medline43. Diwan, V, Brown, L, Gobe, GC. Adenine-induced chronic kidney disease in rats. Nephrology (Carlton) 2018; 23:5–11
Google Scholar | Crossref | Medline44. Orriss, IR, Burnstock, G, Arnett, TR. Purinergic signalling and bone remodelling. Curr Opin Pharmacol 2010; 10:322–30
Google Scholar |

Comments (0)

No login
gif