1. Levin, A, Bakris, GL, Molitch, M, Smulders, M, Tian, J, Williams, LA, Andress, DL. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 2007; 71:31–38
Google Scholar |
Crossref |
Medline |
ISI2. Górriz, JL, Molina, P, Bover, J, Barril, G, Martín-De Francisco, AL, Caravaca, F, Hervás, J, Piñera, C, Escudero, V, Molinero, LM. Characteristics of bone mineral metabolism in patients with stage 3-5 chronic kidney disease not on dialysis: results of the OSERCE study. Nefrologia 2013; 33:46–60
Google Scholar |
Medline3. Craver, L, Marco, MP, Martinez, I, Rue, M, Borras, M, Martin, ML, Sarro, F, Valdivielso, JM, Fernandez, E. Mineral metabolism parameters throughout chronic kidney disease stages 1-5 – achievement of K/DOQI target ranges. Nephrol Dial Transplant 2007; 22:1171–76
Google Scholar |
Crossref |
Medline |
ISI4. Liabeuf, S, Mccullough, K, Young, EW, Pisoni, R, Zee, J, Reichel, H, Pecoits-Filho, R, Port, FK, Stengel, B, Csomor, PA, Metzger, M, Robinson, B, Massy, ZA. International variation in the management of mineral bone disorder in patients with chronic kidney disease: results from CKDopps. Bone 2019; 129:115058
Google Scholar |
Crossref |
Medline5. Naves-Diaz, M, Passlick-Deetjen, J, Guinsburg, A, Marelli, C, Fernandez-Martin, JL, Rodriguez-Puyol, D, Cannata-Andia, JB. Calcium, phosphorus, PTH and death rates in a large sample of dialysis patients from Latin America. The CORES study. Nephrol Dial Transplant 2011; 26:1938–47
Google Scholar |
Crossref |
Medline |
ISI6. Ahmadi, N, Mao, SS, Hajsadeghi, F, Arnold, B, Kiramijyan, S, Gao, Y, Flores, F, Azen, S, Budoff, M. The relation of low levels of bone mineral density with coronary artery calcium and mortality. Osteoporos Int 2018; 29:1609–16
Google Scholar |
Crossref |
Medline7. Sekercioglu, N, Angeliki Veroniki, A, Thabane, L, Busse, JW, Akhtar-Danesh, N, Iorio, A, Cruz Lopes, L, Guyatt, GH. Effects of different phosphate lowering strategies in patients with CKD on laboratory outcomes: a systematic review and NMA. PLoS One 2017; 12:e0171028
Google Scholar |
Crossref |
Medline8. Barreto, FC, Barreto, DV, Massy, ZA, Drueke, TB. Strategies for phosphate control in patients with CKD. Kidney Int Rep 2019; 4:1043–56
Google Scholar |
Crossref |
Medline9. Elder, GJ, Center, J. The role of calcium and non calcium-based phosphate binders in chronic kidney disease. Nephrology (Carlton) 2017; 22: 42–46
Google Scholar |
Crossref |
Medline10. Soriano, S, Ojeda, R, Rodriguez, M, Almaden, Y, Rodriguez, M, Martin-Malo, A, Aljama, P. The effect of phosphate binders, calcium and lanthanum carbonate on FGF23 levels in chronic kidney disease patients. Clin Nephrol 2013; 80:17–22
Google Scholar |
Crossref |
Medline11. Koiwa, F, Kazama, JJ, Tokumoto, A, Onoda, N, Kato, H, Okada, T, Nii-Kono, T, Fukagawa, M, Shigematsu, T; Group RODCR . Sevelamer hydrochloride and calcium bicarbonate reduce serum fibroblast growth factor 23 levels in dialysis patients. Therapher Dial 2005; 9:336–39
Google Scholar |
Crossref |
Medline |
ISI12. Gutiérrez, OM, Mannstadt, M, Isakova, T, Rauh-Hain, JA, Tamez, H, Shah, A, Smith, K, Lee, H, Thadhani, R, Jüppner, H, Wolf, M. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008; 359:584–92
Google Scholar |
Crossref |
Medline |
ISI13. Isakova, T, Cai, X, Lee, J, Xie, D, Wang, X, Mehta, R, Allen, NB, Scialla, JJ, Pencina, MJ, Anderson, AH, Talierco, J, Chen, J, Fischer, MJ, Steigerwalt, SP, Leonard, MB, Hsu, CY, De Boer, IH, Kusek, JW, Feldman, HI ,Wolf M; on behalf of Chronic Renal Insufficiency Cohort Study I . Longitudinal FGF23 trajectories and mortality in patients with CKD. J Am Soc Nephrol 2018; 29:579–90
Google Scholar |
Crossref |
Medline14. Nastou, D, Fernandez-Fernandez, B, Elewa, U, Gonzalez-Espinoza, L, Gonzalez-Parra, E, Sanchez-Nino, MD, Ortiz, A. Next-generation phosphate binders: focus on iron-based binders. Drugs 2014; 74:863–77
Google Scholar |
Crossref |
Medline |
ISI15. Yokoyama, K, Hirakata, H, Akiba, T, Fukagawa, M, Nakayama, M, Sawada, K, Kumagai, Y, Block, GA. Ferric citrate hydrate for the treatment of hyperphosphatemia in nondialysis-dependent CKD. CJASN 2014; 9:543–52
Google Scholar |
Crossref |
Medline |
ISI16. Koiwa, F, Terao, A. Dose-response efficacy and safety of PA21 in Japanese hemodialysis patients with hyperphosphatemia: a randomized, placebo-controlled, double-blind, phase II study. Clin Exp Nephrol 2017; 21:513–22
Google Scholar |
Crossref |
Medline17. Koiwa, F, Yokoyama, K, Fukagawa, M, Terao, A, Akizawa, T. Efficacy and safety of sucroferric oxyhydroxide compared with sevelamer hydrochloride in Japanese haemodialysis patients with hyperphosphataemia: a randomized, open-label, multicentre, 12-week phase III study. Nephrology (Carlton) 2017; 22:293–300
Google Scholar |
Crossref |
Medline18. Floege, J, Covic, AC, Ketteler, M, Mann, JF, Rastogi, A, Spinowitz, B, Chong, EM, Gaillard, S, Lisk, LJ, Sprague, SM; Sucroferric Oxyhydroxide Study Group . Long-term effects of the iron-based phosphate binder, sucroferric oxyhydroxide, in dialysis patients. Nephrol Dial Transplant 2015; 30:1037–46
Google Scholar |
Crossref |
Medline |
ISI19. Iguchi, A, Kazama, JJ, Yamamoto, S, Yoshita, K, Watanabe, Y, Iino, N, Narita, I. Administration of ferric citrate hydrate decreases circulating FGF23 levels independently of serum phosphate levels in hemodialysis patients with iron deficiency. Nephron 2015; 131:161–66
Google Scholar |
Crossref |
Medline20. Phan, O, Maillard, M, Peregaux, C, Mordasini, D, Stehle, JC, Funk, F, Burnier, M. PA21, a new iron-based noncalcium phosphate binder, prevents vascular calcification in chronic renal failure rats. J Pharmacol Exp Ther 2013; 346:281–89
Google Scholar |
Crossref |
Medline21. Ketteler, M, Sprague, SM, Covic, AC, Rastogi, A, Spinowitz, B, Rakov, V, Walpen, S, Floege, J. Effects of sucroferric oxyhydroxide and sevelamer carbonate on chronic kidney disease-mineral bone disorder parameters in dialysis patients. Nephrol Dial Transplant 2019; 34:1163–70
Google Scholar |
Crossref |
Medline22. Shima, H, Miya, K, Okada, K, Minakuchi, J, Kawashima, S. Sucroferric oxyhydroxide decreases serum phosphorus level and fibroblast growth factor 23 and improves renal anemia in hemodialysis patients. BMC Res Notes 2018; 11:363
Google Scholar |
Crossref |
Medline23. Yaguchi, A, Tatemichi, S, Takeda, H, Kobayashi, M. PA21, a novel phosphate binder, improves renal osteodystrophy in rats with chronic renal failure. PLoS One 2017; 12:e0180430
Google Scholar |
Crossref |
Medline24. Custódio, MR, Elias, RM, Velasquez, WD, Dos Reis, LM, Oliveira, IB, Moyses, RMA, Carvalho, AB, Jorgetti, V. The unexpected presence of iron in bone biopsies of hemodialysis patients. Int Urol Nephrol 2018; 50:1907–12
Google Scholar |
Crossref |
Medline25. Lewis, JB, Sika, M, Koury, MJ, Chuang, P, Schulman, G, Smith, MT, Whittier, FC, Linfert, DR, Galphin, CM, Athreya, BP, Nossuli, AK, Chang, IJ, Blumenthal, SS, Manley, J, Zeig, S, Kant, KS, Olivero, JJ, Greene, T, Dwyer, JP; Collaborative Study Group . Ferric citrate controls phosphorus and delivers iron in patients on dialysis. Jasn 2015; 26:493–503
Google Scholar |
Crossref26. Iida, A, Matsushita, M, Ohta, T, Yamada, T. Conventional and novel impacts of ferric citrate on iron deficiency anemia and phosphorus metabolism in rats. J Vet Med Sci 2020; 82:379–86
Google Scholar |
Crossref |
Medline27. Baxter, J, Shimizu, F, Takiguchi, Y, Wada, M, Yamaguchi, T. Effect of iron(III) chitosan intake on the reduction of serum phosphorus in rats. J Pharm Pharmacol 2000; 52:863–74
Google Scholar |
Crossref |
Medline28. Burger, C, Valcarenghi, D, Sandri, S, Rodrigues, CA. Cross-linking chitosan-Fe(III), an oral phosphate binder: studies in vitro and in vivo. Int J Pharm 2001; 223:29–33
Google Scholar |
Crossref |
Medline29. Schoninger, LM, Dall'oglio, RC, Sandri, S, Rodrigues, CA, Burger, C. Chitosan iron(III) reduces phosphorus levels in alloxan diabetes-induced rats with signs of renal failure development. Basic Clin Pharmacol Toxicol 2010; 106:467–71
Google Scholar |
Crossref |
Medline30. Do Carmo, WB, Castro, BBA, Rodrigues, CA, Custódio, MR, Sanders-Pinheiro, H. Chitosan-Fe (III) complex as a phosphate chelator in uraemic rats: a novel treatment option. Basic Clin Pharmacol Toxicol 2018; 122:120–25
Google Scholar |
Crossref |
Medline31. De Castro, BBA, Do Carmo, WB, De Albuquerque Suassuna, PG, Carminatti, M, Brito, JB, Dominguez, WV, De Oliveira, IB, Jorgetti, V, Custodio, MR, Sanders-Pinheiro, H. Effect of cross-linked chitosan iron (III) on vascular calcification in uremic rats. Exp Biol Med (Maywood) 2018; 243:796–802
Google Scholar |
SAGE Journals |
ISI32. Malberti, F, Surian, M, Poggio, F, Minoia, C, Salvadeo, A. Efficacy and safety of long-term treatment with calcium carbonate as a phosphate binder. Am J Kidney Dis 1988; 12:487–91
Google Scholar |
Crossref |
Medline33. Yaguchi, A, Akahane, K, Tsuchioka, K, Yonekubo, S, Yamamoto, S, Tamai, Y, Tatemichi, S, Takeda, H. A comparison between the combined effect of calcium carbonate with sucroferric oxyhydroxide and other phosphate binders: an in vitro and in vivo experimental study. BMC Nephrol 2019; 20:465
Google Scholar |
Crossref |
Medline34. Recker, RR, Kimmel, DB, Dempster, D, Weinstein, RS, Wronski, TJ, Burr, DB. Issues in modern bone histomorphometry. Bone 2011; 49:955–64
Google Scholar |
Crossref |
Medline |
ISI35. Bijvoet, OL. Relation of plasma phosphate concentration to renal tubular reabsorption of phosphate. Clin Sci 1969; 37:23–36
Google Scholar |
Medline |
ISI36. Dempster, DW, Compston, JE, Drezner, MK, Glorieux, FH, Kanis, JA, Malluche, H, Meunier, PJ, Ott, SM, Recker, RR, Parfitt, AM. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 2013; 28:2–17
Google Scholar |
Crossref |
Medline |
ISI37. Ketteler, M, Block, GA, Evenepoel, P, Fukagawa, M, Herzog, CA, Mccann, L, Moe, SM, Shroff, R, Tonelli, MA, Toussaint, ND, Vervloet, MG, Leonard, MB. Executive summary of the 2017 KDIGO chronic kidney Disease-Mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int 2017; 92:26–36
Google Scholar |
Crossref |
Medline38. Lehmann, G, Ott, U, Kaemmerer, D, Schuetze, J, Wolf, G. Bone histomorphometry and biochemical markers of bone turnover in patients with chronic kidney disease stages 3 - 5. Clin Nephrol 2008; 70:296–305
Google Scholar |
Crossref |
Medline39. Gal-Moscovici, A, Popovtzer, MM. New worldwide trends in presentation of renal osteodystrophy and its relationship to parathyroid hormone levels. Clin Nephrol 2005; 63:284–89
Google Scholar |
Crossref |
Medline40. Iguchi, A, Yamamoto, S, Yamazaki, M, Tasaki, K, Suzuki, Y, Kazama, JJ, Narita, I. Effect of ferric citrate hydrate on FGF23 and PTH levels in patients with non-dialysis-dependent chronic kidney disease with normophosphatemia and iron deficiency. Clin Exp Nephrol 2018; 22:789–96
Google Scholar |
Crossref |
Medline41. Cozzolino, M, Funk, F, Rakov, V, Phan, O, Teitelbaum, I. Preclinical pharmacokinetics, pharmacodynamics and safety of sucroferric oxyhydroxide. Cdm 2014; 15:953–65
Google Scholar |
Crossref42. Geisser, P, Philipp, E. PA21: a novel phosphate binder for the treatment of hyperphosphatemia in chronic kidney disease. Clin Nephrol 2010; 74:4–11
Google Scholar |
Crossref |
Medline43. Diwan, V, Brown, L, Gobe, GC. Adenine-induced chronic kidney disease in rats. Nephrology (Carlton) 2018; 23:5–11
Google Scholar |
Crossref |
Medline44. Orriss, IR, Burnstock, G, Arnett, TR. Purinergic signalling and bone remodelling. Curr Opin Pharmacol 2010; 10:322–30
Google Scholar |
Comments (0)