1. Olokoba, AB, Obateru, OA, Olokoba, LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J 2012; 27:269–73
Google Scholar |
Crossref |
Medline2. Maitra, A, Abbas, AK. Endocrine system. In: Kumar, V, Fausto, N, Abbas, AK (eds) Robbins and Cotran pathologic basis of disease. 7th ed. Philadelphia: Saunders, 2005, pp.1156–226.
Google Scholar3. Seong, J, Kang, JY, Sun, JS, Kim, KW. Hypothalamic inflammation and obesity: a mechanistic review. Arch Pharm Res 2019; 42:383–92
Google Scholar |
Crossref |
Medline4. Deacon, CF. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front Endocrinol (Lausanne) 2019; 10:80
Google Scholar |
Crossref |
Medline5. Hu, FB, Manson, JE, Stampfer, MJ, Colditz, G, Liu, S, Solomon, CG, Willett, WC. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 2001; 345:790–7
Google Scholar |
Crossref |
Medline |
ISI6. Mahato, DK, Lee, KE, Kamle, M, Devi, S, Dewangan, KN, Kumar, P, Kang, SG. Aflatoxins in food and feed: an overview on prevalence, detection and control strategies. Front Microbiol 2019; 10:2266
Google Scholar |
Crossref |
Medline7. Shen, HM, Shi, CY, Lee, HP, Ong, CN. Aflatoxin B1-induced lipid peroxidation in rat liver. Toxicol Appl Pharmacol 1994; 127:145–50
Google Scholar |
Crossref |
Medline8. Abdel-Wahhab, MA, Aly, SE. Antioxidants and radical scavenging properties of vegetable extracts in rats fed aflatoxin-contaminated diet. J Agric Food Chem 2003; 51:2409–14
Google Scholar |
Crossref |
Medline9. Kumar, P, Mahato, DK, Kamle, M, Mohanta, TK, Kang, SG. Aflatoxins: a global concern for food safety, human health and their management. Front Microbiol 2016; 7:2170
Google Scholar |
Medline10. Tsai, FJ, Chen, SY, Liu, YC, Liao, HY, Chen, CJ. The comparison of CHCA solvent compositions for improving LC-MALDI performance and its application to study the impact of aflatoxin B1 on the liver proteome of diabetes mellitus type 1 mice. PLoS One 2017; 12:e0181423
Google Scholar |
Crossref |
Medline11. Aleissa, MS, Alkahtani, S, Abd Eldaim, MA, Ahmed, AM, Bungău, SG, Almutairi, B, Bin-Jumah, M, AlKahtane, AA, Alyousif, MS, Abdel-Daim MM. Fucoidan ameliorates oxidative stress, inflammation, DNA damage, and hepatorenal injuries in diabetic rats intoxicated with aflatoxin b1. Oxid Med Cell Longev 2020; 2020:9316751
Google Scholar |
Crossref |
Medline12. Abdel-Mobdy, AE, Khattab, MS, Mahmoud, EA, Mohamed, ER, Abdel-Rahim, EA. Semi-modified okara whey diet increased insulin secretion in diabetic rats fed a basal or high-fat diet. Food Sci Biotechnol 2021; 30:107–16
Google Scholar |
Crossref |
Medline13. Minaiyan, M, Ghannadi, A, Movahedian, A, Hakim-Elahi, I. Effect of Hordeum vulgare L. (barley) on blood glucose levels of normal and STZ-induced diabetic rats. Res Pharm Sci 2014; 9:173–8
Google Scholar |
Medline14. Lee, NY, Kim, YK, Choi, I, Cho, SK, Hyun, JN, Choi, JS, Park, KH, Kim, KJ, Lee, MJ. Biological activity of barley (Hordeum vulgare L.) and barley byproduct extracts. Food Sci Biotechnol 2010; 19:785–91
Google Scholar |
Crossref15. Zeng, Y, Pu, X, Yang, J, Du, J, Yang, X, Li, X, Li, L, Zhou, Y, Yang, T. Preventive and therapeutic role of functional ingredients of barley grass for chronic diseases in human beings. Oxid Med Cell Longev 2018; 2018:3232080
Google Scholar |
Crossref |
Medline16. Panthi, M, Subba, RK, Raut, B, Khanal, DP, Koirala, N. Bioactivity evaluations of leaf extract fractions from young barley grass and correlation with their phytochemical profiles. BMC Complement Med Ther 2020; 20:64
Google Scholar |
Crossref |
Medline17. Abdallah, MMF. Seed sprouts, a Pharaoh’s heritage to improve food quality. Arab Universities Journal of Agriculture Science 2008; 16:469–78
Google Scholar |
Crossref18. Dzowela, BH, Hove, L, Mafongoya, PL. Effect of drying method on chemical composition and in vitro digestibility of multi-purpose tree and shrub fodders. Tropical Grasslands 1995; 29:263–9
Google Scholar19. Santana, PM, Miranda, M, Payrol, JA, Silva, M, Hernández, V, Peralta, EP. Gas chromatography-mass spectrometry study from the leaves fractions obtained of Vernonanthura patens (kunth) H. Rob. Ijoc 2013; 3:105–9
Google Scholar |
Crossref20. Davis, ND, Diener, UL, Eldridge, DW. Production of aflatoxins B1 and G1 by Aspergillus flavus in a semisynthetic medium. Appl Microbiol 1966; 14:378–80
Google Scholar |
Crossref |
Medline21. Trucksess, MW, Stack, ME, Nesheim, S, Page, SW, Albert, RH, Hansen, TJ. Immunoaffinity column coupled with solution fluorometry or liquid chromatography postcolumn derivatization for determination of aflatoxins in corn, peanuts, peanut butter: collaborative study. J Assoc off Anal Chem 1991; 74:81–8
Google Scholar |
Medline22. Zhang, M, Lv, XY, Li, J, Xu, ZG, Chen, L. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res 2008; 2008:704045
Google Scholar |
Crossref |
Medline23. Trinder, P. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 1969; 22:158–61
Google Scholar |
Crossref |
Medline |
ISI24. Temple, TC, Clark, PM, Hales, NNC. Measurement of insulin secretion in type 2-diabetes problems and pitfalls. Diabet Med 1992; 9:503–12
Google Scholar |
Crossref |
Medline |
ISI25. Reitman, S, Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 1957; 28:56–63
Google Scholar |
Crossref |
Medline |
ISI26. Belfield, A, Goldberg, D. Colorimetric determination of alkaline phosphatase activity. Enzyme 1971; 12:561–6
Google Scholar |
Crossref |
Medline27. Walter, M, Gerarde, H. Ultramicromethod for the determination of conjugated and total bilirubin in serum or plasma. Microchem J 1970; 15:231–6
Google Scholar |
Crossref28. Gornnall, AG, Bardawill, CJ, David, MM. Determination of serum proteins by means of the biuret reaction. J Biol Chem 1949; 177:751–66
Google Scholar |
Crossref |
Medline29. Naithani, M, Singh, P. Teitz textbook of clinical chemistry & molecular diagnostics. Med J Armed Forces India 2006; 62:204
Google Scholar |
Crossref30. Fawcett, JK, Scott, JE. Determination of urease modified Berthelot reaction. J Clin Pathol 1960; 13:156–9
Google Scholar |
Crossref |
Medline |
ISI31. Moore, JF, Sharer, JD. Methods for quantitative creatinine determination. Curr Protoc Hum Genet 2017; 93:A.3O.1–.3O.7.
Google Scholar |
Crossref32. Beutler, E, Duron, O, Kelly, BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963; 61:882–90
Google Scholar |
Medline33. Nishikimi, M, Rao, NA, Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 1972; 46:849–54
Google Scholar |
Crossref |
Medline |
ISI34. Ohkawa, H, Ohishi, N, Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95:351–8
Google Scholar |
Crossref |
Medline |
ISI35. Aebi, H. Catalase in vitro. Methods Enzymol 1984; 105:121–6
Google Scholar |
Crossref |
Medline |
ISI36. Kinnear, PR, Gray, CD. SPSS for windows made simple. 3rd ed. Hove: Psychology Press/Taylor & Francis (UK), 1999.
Google Scholar37. Waller, RA, Duncan, DB. A Bayes rule for the symmetric multiple comparisons problem. J Am Stat Assoc 1969; 64:1484–503
Google Scholar |
ISI38. Turner, ER, Luo, Y, Buchanan, RL. Microgreen nutrition, food safety, and shelf life: a review. J Food Sci 2020; 85:870–82
Google Scholar |
Crossref |
Medline39. Azam, A, Itrat, N, Ahmed, U. Hypoglycemic effect of barley (Hordeum vulgare) in diabetics. Int J Innov Sci Res Technol 2019; 4:515–9
Google Scholar40. Sanada, M, Hayashi, R, Imai, Y, Nakamura, F, Inoue, T, Ohta, S, Kawachi, H. 4′,6-dimethoxyisoflavone-7-O-β-D-glucopyranoside (wistin) is a peroxisome proliferator-activated receptor γ (PPARγ) agonist that stimulates adipocyte differentiation. Anim Sci J 2016; 87:1347–51
Google Scholar |
Crossref |
Medline41. Roca-Saavedra, P, Mariño-Lorenzo, P, Miranda, JM, Porto-Arias, JJ, Lamas, A, Vazquez, BI, Franco, CM, Cepeda, A. Phytanic acid consumption and human health, risks, benefits and future trends: a review. Food Chem 2017; 21:237–47
Google Scholar |
Crossref42. Karak, P. Biological activities of flavonoids: an overview. Int J Pharm Sci Res 2019; 10:1567–74
Google Scholar43. Lim, AK. Diabetic nephropathy – complications and treatment. Int J Nephrol Renovasc Dis 2014; 7:361–81
Google Scholar |
Crossref |
Medline44. Acharya, B, Chaijaroenkul, W, Na-Bangchang, K. Therapeutic potential and pharmacological activities of β-eudesmol. Chem Biol Drug Des 2021; 97:984–96
Google Scholar |
Crossref |
Medline45. Farhana, A, Lappin, SL. Biochemistry, lactate dehydrogenase. Treasure Island, FL: StatPearls Publishing, 2021.
Google Scholar46. Ainscow, EK, Zhao, C, Rutter, GA. Acute overexpression of lactate dehydrogenase – a perturbs beta-cell mitochondrial metabolism and insulin secretion. Diabetes 2000; 49:1149–55
Google Scholar |
Crossref |
Medline |
ISI47. Rastogi, R, Srivastava, AK, Srivastava, M, Rastogi, AK. Hepatocurative effect of picroliv and silymarin against aflatoxin b1 induced hepatotoxicity in rats. Planta Med 2000; 66:709–13
Google Scholar |
Crossref |
Medline48. Zhao, L, Dong, M, Ren, M, Li, C, Zheng, H, Gao, H. Metabolomic analysis identifies lactate as an important pathogenic factor in diabetes-associated cognitive decline rats. Mol Cell Proteomics 2018; 17:2335–46
Google Scholar |
Crossref |
Medline
Comments (0)