Lipids activate skeletal muscle mitochondrial fission and quality control networks to induce insulin resistance in humans

Samuel V.T. Petersen K.F. Shulman G.I.

Lipid-induced insulin resistance: unravelling the mechanism.

Lancet. 375: 2267-2277Yu C. Chen Y. Cline G.W. Zhang D. Zong H. Wang Y. et al.

Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle.

J Biol Chem. 277: 50230-50236Haus J.M. Kashyap S.R. Kasumov T. Zhang R. Kelly K.R. Defronzo R.A. et al.

Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance.

Diabetes. 58: 337-343Szendroedi J. Phielix E. Roden M.

The role of mitochondria in insulin resistance and type 2 diabetes mellitus.

Nat Rev Endocrinol. 8: 92-103Kelley D.E. He J. Menshikova E.V. Ritov V.B.

Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes.

Diabetes. 51: 2944-2950Boushel R. Gnaiger E. Schjerling P. Skovbro M. Kraunsoe R. Dela F.

Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle.

Diabetologia. 50: 790-796Turner N. Bruce C.R. Beale S.M. Hoehn K.L. So T. Rolph M.S. et al.

Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents.

Diabetes. 56: 2085-2092Fealy C.E. Mulya A. Axelrod C.L. Kirwan J.P.

Mitochondrial dynamics in skeletal muscle insulin resistance and type 2 diabetes.

Transl Res. 202: 69-82Gao A.W. Canto C. Houtkooper R.H.

Mitochondrial response to nutrient availability and its role in metabolic disease.

EMBO Mol Med. 6: 580-589

Functions and dysfunctions of mitochondrial dynamics.

Nat Rev Mol Cell Biol. 8: 870-879Kwong J.Q. Molkentin J.D.

Physiological and pathological roles of the mitochondrial permeability transition pore in the heart.

Cell Metab. 21: 206-214

Mitochondrial fusion and fission in cell life and death.

Nat Rev Mol Cell Biol. 11: 872-884Loson O.C. Song Z. Chen H. Chan D.C.

Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission.

Mol Biol Cell. 24: 659-667Bleazard W. McCaffery J.M. King E.J. Bale S. Mozdy A. Tieu Q. et al.

The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast.

Nat Cell Biol. 1: 298-304Kashatus J.A. Nascimento A. Myers L.J. Sher A. Byrne F.L. Hoehn K.L. et al.

Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth.

Mol Cell. 57: 537-551Mears J.A. Lackner L.L. Fang S. Ingerman E. Nunnari J. Hinshaw J.E.

Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission.

Nat Struct Mol Biol. 18: 20-26Frank S. Gaume B. Bergmann-Leitner E.S. Leitner W.W. Robert E.G. Catez F. et al.

The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis.

Dev Cell. 1: 515-525Narendra D.P. Jin S.M. Tanaka A. Suen D.F. Gautier C.A. Shen J. et al.

PINK1 is selectively stabilized on impaired mitochondria to activate Parkin.

PLoS Biol. 8e1000298Griffin E.E. Detmer S.A. Chan D.C.

Molecular mechanism of mitochondrial membrane fusion.

Biochim Biophys Acta. 2006: 482-489Ge Y. Shi X. Boopathy S. McDonald J. Smith A.W. Chao L.H.

Two forms of Opa1 cooperate to complete fusion of the mitochondrial inner-membrane.

Elife. 9Jheng H.F. Tsai P.J. Guo S.M. Kuo L.H. Chang C.S. Su I.J. et al.

Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle.

Mol Cell Biol. 32: 309-319

Axelrod CL, Fealy CE, Mulya A, Kirwan JP. Exercise training remodels human skeletal muscle mitochondrial fission and fusion machinery towards a pro-elongation phenotype. Acta Physiol (Oxf) 2019;225:e13216.

DeFronzo R.A. Tobin J.D. Andres R.

Glucose clamp technique: a method for quantifying insulin secretion and resistance.

Am J Physiol. 237: E214-E223

Fealy CE, Mulya A, Lai N, Kirwan JP. Exercise training decreases activation of the mitochondrial fission protein dynamin-related protein-1 in insulin-resistant human skeletal muscle. J Appl Physiol (1985). 2014;117:239–45.

Steele R. Wall J.S. De Bodo R.C. Altszuler N.

Measurement of size and turnover rate of body glucose pool by the isotope dilution method.

Am J Physiol. 187: 15-24

Calculation of substrate oxidation rates in vivo from gaseous exchange.

J Appl Physiol Respir Environ Exerc Physiol. 55: 628-634Evans W.J. Phinney S.D. Young V.R.

Suction applied to a muscle biopsy maximizes sample size.

Med Sci Sports Exerc. 14: 101-102Schneider C.A. Rasband W.S. Eliceiri K.W.

NIH image to ImageJ: 25 years of image analysis.

Nat Methods. 9: 671-675

Measuring oxidative phosphorylation in human skin fibroblasts.

Anal Biochem. 437: 52-58Chavez A.O. Kamath S. Jani R. Sharma L.K. Monroy A. Abdul-Ghani M.A. et al.

Effect of short-term free fatty acids elevation on mitochondrial function in skeletal muscle of healthy individuals.

J Clin Endocrinol Metab. 95: 422-429Halling J.F. Ringholm S. Olesen J. Prats C. Pilegaard H.

Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1alpha dependent manner.

Exp Gerontol. 96: 1-6Fujioka H. Tandler B. Hoppel C.L.

Mitochondrial division in rat cardiomyocytes: an electron microscope study.

Anat Rec (Hoboken). 295: 1455-1461

A study of fixation of early amphibian embryos for electron microscopy.

J Ultrastruct Res. 36: 633-645

Improved uranyl acetate staining for electron microscopy.

J Electron Microsc Tech. 16: 81-82Hanaichi T. Sato T. Iwamoto T. Malavasi-Yamashiro J. Hoshino M. Mizuno N.

A stable lead by modification of Sato’s method.

J Electron Microsc (Tokyo). 35: 304-306Axelrod C.L. King W.T. Davuluri G. Noland R.C. Hall J. Hull M. et al.

BAM15-mediated mitochondrial uncoupling protects against obesity and improves glycemic control.

EMBO Mol Med. 12e12088Yoon J.C. Ng A. Kim B.H. Bianco A. Xavier R.J. Elledge S.J.

Wnt signaling regulates mitochondrial physiology and insulin sensitivity.

Genes Dev. 24: 1507-1518Solomon T.P. Haus J.M. Kelly K.R. Cook M.D. Filion J. Rocco M. et al.

A low-glycemic index diet combined with exercise reduces insulin resistance, postprandial hyperinsulinemia, and glucose-dependent insulinotropic polypeptide responses in obese, prediabetic humans.

Am J Clin Nutr. 92: 1359-1368

Boyle KE, Zheng D, Anderson EJ, Neufer PD, Houmard JA. Mitochondrial lipid oxidation is impaired in cultured myotubes from obese humans. Int J Obes (Lond) 2012;36:1025–31.

Gundersen A.E. Kugler B.A. McDonald P.M. Veraksa A. Houmard J.A. Zou K.

Altered mitochondrial network morphology and regulatory proteins in mitochondrial quality control in myotubes from severely obese humans with or without type 2 diabetes.

Appl Physiol Nutr Metab. 45: 283-293

Kristensen CM, Jessen H, Ringholm S, Pilegaard H. Muscle PGC-1alpha in exercise and fasting-induced regulation of hepatic UPR in mice. Acta Physiol (Oxf) 2018;224:e13158.

Kugler BA, Gundersen AE, Li J, Deng W, Eugene N, Gona PN, et al. Roux-en-Y gastric bypass surgery restores insulin-mediated glucose partitioning and mitochondrial dynamics in primary myotubes from severely obese humans. Int J Obes (Lond) 2020;44:684–96.

Filippi B.M. Abraham M.A. Silva P.N. Rasti M. LaPierre M.P. Bauer P.V. et al.

Dynamin-related protein 1-dependent mitochondrial fission changes in the dorsal vagal complex regulate insulin action.

Cell Rep. 18: 2301-2309Bach D. Pich S. Soriano F.X. Vega N. Baumgartner B. Oriola J. et al.

Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity.

J Biol Chem. 278: 17190-17197Bach D. Naon D. Pich S. Soriano F.X. Vega N. Rieusset J. et al.

Expression of Mfn2, the Charcot-Marie-tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6.

Diabetes. 54: 2685-2693Gastaldi G. Russell A. Golay A. Giacobino J.P. Habicht F. Barthassat V. et al.

Upregulation of peroxisome proliferator-activated receptor gamma coactivator gene (PGC1A) during weight loss is related to insulin sensitivity but not to energy expenditure.

Diabetologia. 50: 2348-2355Sebastian D. Hernandez-Alvarez M.I. Segales J. Sorianello E. Munoz J.P. Sala D. et al.

Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis.

Proc Natl Acad Sci U S A. 109: 5523-5528Scheele C. Nielsen A.R. Walden T.B. Sewell D.A. Fischer C.P. Brogan R.J. et al.

Altered regulation of the PINK1 locus: a link between type 2 diabetes and neurodegeneration?.

FASEB J. 21: 3653-3665Ritov V.B. Menshikova E.V. He J. Ferrell R.E. Goodpaster B.H. Kelley D.E.

Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes.

Diabetes. 54: 8-14Holloway G.P. Thrush A.B. Heigenhauser G.J. Tandon N.N. Dyck D.J. Bonen A. et al.

Skeletal muscle mitochondrial FAT/CD36 content and palmitate oxidation are not decreased in obese women.

Am J Physiol Endocrinol Metab. 292: E1782-E1789Schrauwen-Hinderling V.B. Kooi M.E. Hesselink M.K. Jeneson J.A. Backes W.H. van Echteld C.J. et al.

Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects.

Diabetologia. 50: 113-120Simoneau J.A. Veerkamp J.H. Turcotte L.P. Kelley D.E.

Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss.

FASEB J. 13: 2051-2060Anderson E.J. Lustig M.E. Boyle K.E. Woodlief T.L. Kane D.A. Lin C.T. et al.

Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans.

J Clin Invest. 119: 573-581Asmann Y.W. Stump C.S. Short K.R. Coenen-Schimke J.M. Guo Z. Bigelow M.L. et al.

Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia.

Diabetes. 55: 3309-3319Rambold A.S. Kostelecky B. Elia N. Lippincott-Schwartz J.

Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation.

Proc Natl Acad Sci U S A. 108: 10190-10195Francy C.A. Clinton R.W. Frohlich C. Murphy C. Mears J.A.

Cryo-EM studies of Drp1 reveal cardiolipin interactions that activate the helical oligomer.

Sci Rep. 7: 10744Zorova L.D. Popkov V.A. Plotnikov E.Y. Silachev D.N. Pevzner I.B. Jankauskas S.S. et al.

Mitochondrial membrane potential.

Anal Biochem. 552: 50-59Roden M. Price T.B. Perseghin G. Petersen K.F. Rothman D.L. Cline G.W. et al.

Mechanism of free fatty acid-induced insulin resistance in humans.

J Clin Invest. 97: 2859-2865Kashyap S.R. Belfort R. Berria R. Suraamornkul S. Pratipranawatr T. Finlayson J. et al.

Discordant effects of a chronic physiological increase in plasma FFA on insulin signaling in healthy subjects with or without a family history of type 2 diabetes.

Am J Physiol Endocrinol Metab. 287: E537-E546Shah P. Vella A. Basu A. Basu R. Adkins A. Schwenk W.F. et al.

Elevated free fatty acids impair glucose metabolism in women: decreased stimulation of muscle glucose uptake and suppression of splanchnic glucose production during combined hyperinsulinemia and hyperglycemia.

Diabetes. 52: 38-42Solomon T.P. Haus J.M. Marchetti C.M. Stanley W.C. Kirwan J.P.

Effects of exercise training and diet on lipid kinetics during free fatty acid-induced insulin resistance in older obese humans with impaired glucose tolerance.

Am J Physiol Endocrinol Metab. 297: E552-E559Liu Z. Liu J. Jahn L.A. Fowler D.E. Barrett E.J.

Infusing lipid raises plasma free fatty acids and induces insulin resistance in muscle microvasculature.

J Clin Endocrinol Metab. 94: 3543-3549Reaven G.M. Hollenbeck C. Jeng C.Y. Wu M.S. Chen Y.D.

Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM.

Diabetes. 37: 1020-1024Koves T.R. Ussher J.R. Noland R.C. Slentz D. Mosedale M. Ilkayeva O. et al.

Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance.

Cell Metab. 7: 45-56Schooneman M.G. Vaz F.M. Houten S.M. Soeters M.R.

Acylcarnitines: reflecting or inflicting insulin resistance?.

Diabetes. 62: 1-8Keung W. Ussher J.R. Jaswal J.S. Raubenheimer M. Lam V.H. Wagg C.S. et al.

Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice.

Diabetes. 62: 711-720Liang H. Tantiwong P. Sriwijitkamol A. Shanmugasundaram K. Mohan S. Espinoza S. et al.

Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects.

J Physiol. 591: 2897-2909Mehta N.N. McGillicuddy F.C. Anderson P.D. Hinkle C.C. Shah R. Pruscino L. et al.

Experimental endotoxemia induces adipose inflammation and insulin resistance in humans.

Diabetes. 59: 172-181Muscogiuri G. Salmon A.B. Aguayo-Mazzucato C. Li M. Balas B. Guardado-Mendoza R. et al.

Genetic disruption of SOD1 gene causes glucose intolerance and impairs beta-cell function.

Diabetes. 62: 4201-4207

Protein kinase C: mediator or inhibitor of insulin action?.

J Cell Biochem. 52: 8-13Nowotny B. Zahiragic L. Krog D. Nowotny P.J. Herder C. Carstensen M. et al.

Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans.

Diabetes. 62: 2240-2248Wicks S.E. Vandanmagsar B. Haynie K.R. Fuller S.E. Warfel J.D. Stephens J.M. et al.

Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism.

Proc Natl Acad Sci U S A. 112: E3300-E3309Itani S.I. Ruderman N.B. Schmieder F. Boden G.

Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha.

Diabetes. 51: 2005-2011Boden G. Chen X. Ruiz J. White J.V. Rossetti L.

Mechanisms of fatty acid-induced inhibition of glucose uptake.

J Clin Invest. 93: 2438-2446

Comments (0)

No login
gif