Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition.
Diabetes Res Clin Pract. : 157https://doi.org/10.1016/j.diabres.2019.107843Huang C. Wang Y. Li X. Ren L. Zhao J. Hu Y. et al.Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.
Lancet. 395: 497-506https://doi.org/10.1016/S0140-6736(20)30183-5Zhou F. Yu T. Du R. Fan G. Liu Y. Liu Z. et al.Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.
Lancet. 395: 1054-1062https://doi.org/10.1016/S0140-6736(20)30566-3Huang I. Lim M.A. Pranata R.Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia – a systematic review, meta-analysis, and meta-regression: diabetes and COVID-19.
Diabetes Metab Syndr Clin Res Rev. 14: 395-403https://doi.org/10.1016/j.dsx.2020.04.018Grasselli G. Zangrillo A. Zanella A. Antonelli M. Cabrini L. Castelli A. et al.Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy.
JAMA J Am Med Assoc. 323: 1574-1581https://doi.org/10.1001/jama.2020.5394Richardson S. Hirsch J.S. Narasimhan M. Crawford J.M. McGinn T. Davidson K.W. et al.Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area.
JAMA J Am Med Assoc. 323: 2052-2059https://doi.org/10.1001/jama.2020.6775Kulcsar K.A. Coleman C.M. Beck S.E. Frieman M.B.Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection.
JCI Insight. 4https://doi.org/10.1172/jci.insight.131774Jafar N. Edriss H. Nugent K.The effect of short-term hyperglycemia on the innate immune system.
Am J Med Sci. 351: 201-211https://doi.org/10.1016/j.amjms.2015.11.011Lecube A. Pachón G. Petriz J. Hernández C. Simó R.Phagocytic activity is impaired in type 2 diabetes mellitus and increases after metabolic improvement.
PLoS One. 6https://doi.org/10.1371/journal.pone.0023366COVID-19 pandemic, coronaviruses, and diabetes mellitus.
Am J Physiol Endocrinol Metab. 318: E736-E741https://doi.org/10.1152/ajpendo.00124.2020Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: a Mendelian randomization analysis highlights tentative relevance of diabetes-related traits.
Diabetes Care. 43: 1416-1426https://doi.org/10.2337/dc20-0643Zhang H. Penninger J.M. Li Y. Zhong N. Slutsky A.S.Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target.
Intensive Care Med. 46: 586-590https://doi.org/10.1007/s00134-020-05985-9Li F. Li W. Farzan M. Harrison S.C.Structural biology: structure of SARS coronavirus spike receptor-binding domain complexed with receptor.
Science (80- ). 309: 1864-1868https://doi.org/10.1126/science.1116480Walls A.C. Park Y.J. Tortorici M.A. Wall A. McGuire A.T. Veesler D.Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein.
Cell. 181: 281-292.e6https://doi.org/10.1016/j.cell.2020.02.058Lim S. Bae J.H. Kwon H.S. Nauck M.A.COVID-19 and diabetes mellitus: from pathophysiology to clinical management.
Nat Rev Endocrinol. 17: 11-30https://doi.org/10.1038/s41574-020-00435-4Codo A.C. Davanzo G.G. Monteiro L. de B. de Souza G.F. Muraro S.P. Virgilio-da-Silva J.V. et al.Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis.
Cell Metab. 32: 437-446.e5https://doi.org/10.1016/j.cmet.2020.07.007Kim J.H. Park K. Lee S.B. Kang S. Park J.S. Ahn C.W. et al.Relationship between natural killer cell activity and glucose control in patients with type 2 diabetes and prediabetes.
J Diabetes Investig. 10: 1223-1228https://doi.org/10.1111/jdi.13002Diabetes, obesity, metabolism, and SARS-CoV-2 infection: the end of the beginning.
Cell Metab. 33https://doi.org/10.1016/j.cmet.2021.01.016Diabetes epidemiology in the covid-19 pandemic.
Diabetes Care. 43: 1690-1694https://doi.org/10.2337/dc20-1295Barrera F.J. Shekhar S. Wurth R. Moreno-Pena P.J. Ponce O.J. Hajdenberg M. et al.Prevalence of diabetes and hypertension and their associated risks for poor outcomes in Covid-19 patients.
J Endocr Soc. 4https://doi.org/10.1210/jendso/bvaa102Barron E. Bakhai C. Kar P. Weaver A. Bradley D. Ismail H. et al.Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study.
Lancet Diabetes Endocrinol. 8: 813-822https://doi.org/10.1016/S2213-8587(20)30272-2Holman N. Knighton P. Kar P. O'Keefe J. Curley M. Weaver A. et al.Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study.
Lancet Diabetes Endocrinol. 8: 823-833https://doi.org/10.1016/S2213-8587(20)30271-0McGurnaghan S.J. Weir A. Bishop J. Kennedy S. Blackbourn L.A.K. McAllister D.A. et al.Risks of and risk factors for COVID-19 disease in people with diabetes: a cohort study of the total population of Scotland.
Lancet Diabetes Endocrinol. 9: 82-93https://doi.org/10.1016/S2213-8587(20)30405-8Dennis J.M. Mateen B.A. Sonabend R. Thomas N.J. Patel K.A. Hattersley A.T. et al.Type 2 diabetes and covid-19– related mortality in the critical care setting: a national cohort study in England, March–July 2020.
Diabetes Care. 44: 50-57https://doi.org/10.2337/dc20-1444Cariou B. Hadjadj S. Wargny M. Pichelin M. Al-Salameh A. Allix I. et al.Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study.
Diabetologia. 63: 1500-1515https://doi.org/10.1007/s00125-020-05180-xWargny M. Potier L. Gourdy P. Pichelin M. Amadou C. Benhamou P.-Y. et al.Predictors of hospital discharge and mortality in patients with diabetes and COVID-19: updated results from the nationwide CORONADO study.
Diabetologia. 64: 778-794https://doi.org/10.1007/s00125-020-05351-wWargny M. Gourdy P. Ludwig L. Seret-Bégué D. Bourron O. Darmon P. et al.Type 1 diabetes in people hospitalized for covid-19: new insights from the coronado study.
Diabetes Care. 43: e174-e177https://doi.org/10.2337/dc20-1217O'Malley G. Ebekozien O. Desimone M. Pinnaro C.T. Roberts A. Polsky S. et al.COVID-19 hospitalization in adults with type 1 diabetes: results from the T1D exchange multicenter surveillance study.
J Clin Endocrinol Metab. 106: e936-e942https://doi.org/10.1210/clinem/dgaa825Goyal P. Choi J.J. Pinheiro L.C. Schenck E.J. Chen R. Jabri A. et al.Clinical characteristics of Covid-19 in New York City.
N Engl J Med. 382: 2372-2374https://doi.org/10.1056/nejmc2010419Pranata R. Lim M.A. Yonas E. Vania R. Lukito A.A. Siswanto B.B. et al.Body mass index and outcome in patients with COVID-19: a dose–response meta-analysis.
Diabetes Metab. 47https://doi.org/10.1016/j.diabet.2020.07.005Zhu Z. Hasegawa K. Ma B. Fujiogi M. Camargo C.A. Liang L.Association of obesity and its genetic predisposition with the risk of severe COVID-19: analysis of population-based cohort data.
Metabolism. 112https://doi.org/10.1016/j.metabol.2020.154345Apicella M. Campopiano M.C. Mantuano M. Mazoni L. Coppelli A. Del Prato S.COVID-19 in people with diabetes: understanding the reasons for worse outcomes.
Lancet Diabetes Endocrinol. 8: 782-792https://doi.org/10.1016/S2213-8587(20)30238-2Al-Goblan A.S. Al-Alfi M.A. Khan M.Z.Mechanism linking diabetes mellitus and obesity.
Diabetes Metab Syndr Obes Targets Ther. 7: 587-591https://doi.org/10.2147/DMSO.S67400Stefan N. Birkenfeld A.L. Schulze M.B. Ludwig D.S.Obesity and impaired metabolic health in patients with COVID-19.
Nat Rev Endocrinol. 16: 341-342https://doi.org/10.1038/s41574-020-0364-6Is adipose tissue a reservoir for viral spread, immune activation, and cytokine amplification in coronavirus disease 2019?.
Obesity. 28: 1191-1194https://doi.org/10.1002/oby.22843Sattar N. McInnes I.B. McMurray J.J.V.Obesity is a risk factor for severe COVID-19 infection: multiple potential mechanisms.
Circulation. 142: 4-6https://doi.org/10.1161/CIRCULATIONAHA.120.047659Dandona P. Aljada A. Chaudhuri A. Mohanty P. Garg R.Metabolic syndrome.
Circulation. 111: 1448-1454https://doi.org/10.1161/01.CIR.0000158483.13093.9DGhanim H. Aljada A. Hofmeyer D. Syed T. Mohanty P. Dandona P.Circulating mononuclear cells in the obese are in a proinflammatory state.
Circulation. 110: 1564-1571https://doi.org/10.1161/01.CIR.0000142055.53122.FADoes coronavirus disease 2019 disprove the obesity paradox in acute respiratory distress syndrome?.
Obesity. 28: 1007https://doi.org/10.1002/oby.22835Smati S. Tramunt B. Wargny M. Caussy C. Gaborit B. Vatier C. et al.Relationship between obesity and severe COVID-19 outcomes in patients with type 2 diabetes: results from the CORONADO study.
Diabetes Obes Metab. 23: 391-403https://doi.org/10.1111/dom.14228Watanabe M. Risi R. Tuccinardi D. Baquero C.J. Manfrini S. Gnessi L.Obesity and SARS-CoV-2: a population to safeguard.
Diabetes Metab Res Rev. 36https://doi.org/10.1002/dmrr.3325Watanabe M. Caruso D. Tuccinardi D. Risi R. Zerunian M. Polici M. et al.Visceral fat shows the strongest association with the need of intensive care in patients with COVID-19.
Metabolism. 111https://doi.org/10.1016/j.metabol.2020.154319Pranata R. Lim M.A. Huang I. Yonas E. Henrina J. Vania R. et al.Visceral adiposity, subcutaneous adiposity, and severe coronavirus disease-2019 (COVID-19): systematic review and meta-analysis.
Clin Nutr ESPEN. https://doi.org/10.1016/j.clnesp.2021.04.001Bello-Chavolla O.Y. Bahena-López J.P. Antonio-Villa N.E. Vargas-Vázquez A. González-Díaz A. Márquez-Salinas A. et al.Predicting mortality due to SARS-CoV-2: a mechanistic score relating obesity and diabetes to COVID-19 outcomes in Mexico.
J Clin Endocrinol Metab. 105https://doi.org/10.1210/clinem/dgaa346Korytkowski M. Antinori-Lent K. Drincic A. Hirsch I.B. McDonnell M.E. Rushakoff R. et al.A pragmatic approach to inpatient diabetes management during the COVID-19 pandemic.
J Clin Endocrinol Metab. 105: 1-12https://doi.org/10.1210/clinem/dgaa342Wesorick D. O'Malley C. Rushakoff R. Larsen K. Magee M.Management of diabetes and hyperglycemia in the hospital: a practical guide to subcutaneous insulin use in the non-critically ill, adult patient.
J Hosp Med. 3https://doi.org/10.1002/jhm.353Bornstein S.R. Rubino F. Khunti K. Mingrone G. Hopkins D. Birkenfeld A.L. et al.Practical recommendations for the management of diabetes in patients with COVID-19.
Lancet Diabetes Endocrinol. 8: 546-550https://doi.org/10.1016/S2213-8587(20)30152-2How diabetes management is adapting amid the COVID-19 pandemic.
Lancet Diabetes Endocrinol. 8: 571https://doi.org/10.1016/S2213-8587(20)30181-9COVID-19, type 1 diabetes, and technology: why paediatric patients are leading the way.
Lancet Diabetes Endocrinol. 8: 465-467https://doi.org/10.1016/S2213-8587(20)30155-8Ushigome E. Yamazaki M. Hamaguchi M. Ito T. Matsubara S. Tsuchido Y. et al.Usefulness and safety of remote continuous glucose monitoring for a severe COVID-19 patient with diabetes.
Diabetes Technol Ther. 23: 78-80https://doi.org/10.1089/dia.2020.0237The silver lining to COVID-19: avoiding diabetic ketoacidosis admissions with telehealth.
Diabetes Technol Ther. 22: 449-453https://doi.org/10.1089/dia.2020.0187Garg S.K. Rodbard D. Hirsch I.B. Forlenza G.P.Managing new-onset type 1 diabetes during the COVID-19 pandemic: challenges and opportunities.
Diabetes Technol Ther. 22: 431-439https://doi.org/10.1089/dia.2020.0161Gal R.L. Cohen N.J. Kruger D. Beck R.W. Bergenstal R.M. Calhoun P. et al.Diabetes telehealth solutions: improving self-management through remote initiation of continuous glucose monitoring.
J Endocr Soc. 4https://doi.org/10.1210/jendso/bvaa076Agarwal S. Mathew J. Davis G.M. Shephardson A. Levine A. Louard R. et al.Continuous glucose monitoring in the intensive care unit during the COVID-19 pandemic.
Diabetes Care. 44dc202219https://doi.org/10.2337/dc20-2219Garelli F. Rosales N. Fushimi E. Arambarri D. Mendoza L. De Battista H. et al.Remote glucose monitoring platform for multiple simultaneous patients at coronavirus disease 2019 intensive care units: case report including adults and children.
Diabetes Technol Ther. https://doi.org/10.1089/dia.2020.0556Bode B. Garrett V. Messler J. McFarland R. Crowe J. Booth R. et al.Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States.
J Diabetes Sci Technol. 14: 813-821https://doi.org/10.1177/1932296820924469Wu J. Huang J. Zhu G. Wang Q. Lv Q. Huang Y. et al.Elevation of blood glucose level predicts worse outcomes in hospitalized patients with COVID-19: a retrospective cohort study.
BMJ Open Diabetes Res Care. 8: 1476https://doi.org/10.1136/bmjdrc-2020-001476Li H. Tian S. Chen T. Cui Z. Shi N. Zhong X. et al.Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID-19.
Diabetes Obes Metab. 22: 1897-1906https://doi.org/10.1111/dom.14099Zhu L. She Z.G. Cheng X. Qin J.J. Zhang X.J. Cai J. et al.Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes.
Cell Metab. 31: 1068-1077.e3https://doi.org/10.1016/j.cmet.2020.04.021Zhang B. Liu S. Zhang L. Dong Y. Zhang S.Admission fasting blood glucose predicts 30-day poor outcome in patients hospitalized for COVID-19 pneumonia.
Diabetes Obes Metab. 22: 1955-1957https://doi.org/10.1111/dom.14132Zhu B. Jin S. Wu L. Hu C. Wang Z. Bu L. et al.J-shaped association between fasting blood glucose levels and COVID-19 severity in patients without diabetes.
Diabetes Res Clin Pract. 168https://doi.org/10.1016/j.diabres.2020.108381Sardu C. D'Onofrio N. Balestrieri M.L. Barbieri M. Rizzo M.R. Messina V. et al.Outcomes in patients with hyperglycemia affected by COVID-19: can we do more on glycemic control?.
Diabetes Care. 43: 1408-1415https://doi.org/10.2337/dc20-0723Coppelli A. Giannarelli R. Aragona M. Penno G. Falcone M. Tiseo G. et al.Hyperglycemia at hospital admission is associated with severity of the prognosis in patients hospitalized for COVID-19: the Pisa COVID-19 study.
Diabetes Care. 43: 2345-2348https://doi.org/10.2337/dc20-1380Lazarus G. Audrey J. Wangsaputra V.K. Tamara A. Tahapary D.L.High admission blood glucose independently predicts poor prognosis in COVID-19 patients: a systematic review and dose-response meta-analysis.
Diabetes Res Clin Pract. 171https://doi.org/10.1016/j.diabres.2020.108561Coronavirus infections and type 2 diabetes-shared pathways with therapeutic implications.
Endocr Rev. 41https://doi.org/10.1210/endrev/bnaa011Cameron A.R. Morrison V.L. Levin D. Mohan M. Forteath C. Beall C. et al.Anti-inflammatory effects of metformin irrespective of diabetes status.
Circ Res. 119: 652-665https://doi.org/10.1161/CIRCRESAHA.116.308445Lukito A.A. Pranata R. Henrina J. Lim M.A. Lawrensia S. Suastika K.The effect of metformin consumption on mortality in hospitalized COVID-19 patients: a systematic review and meta-analysis.
Diabetes Metab Syndr Clin Res Rev. 14: 2177-2183https://doi.org/10.1016/j.dsx.2020.11.006Mulvihill E.E. Drucker D.J.Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors.
Endocr Rev. 35: 992-1019https://doi.org/10.1210/er.2014-1035The biology of incretin hormones.
Cell Metab. 3: 153-165https://doi.org/10.1016/j.cmet.2006.01.004Lambeir A.M. Durinx C. Scharpé S. De Meester I.Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV.
Crit Rev Clin Lab Sci. 40: 209-294https://doi.org/10.1080/713609354Metzemaekers M. Van Damme J. Mortier A. Proost P.Regulation of chemokine activity - a focus on the role of dipeptidyl peptidase IV/CD26.
Front Immunol. 7https://doi.org/10.3389/fimmu.2016.00483Ghorpade D.S. Ozcan L. Zheng Z. Nicoloro S.M. Shen Y. Chen E. et al.Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance.
Nature. 555: 673-677https://doi.org/10.1038/nature26138Price J.D. Linder G. Li W.P. Zimmermann B. Rother K.I. Malek R. et al.Effects of short-term sitagliptin treatment on immune parameters in healthy individuals, a randomized placebo-controlled study.
Clin Exp Immunol. 174: 120-128https://doi.org/10.1111/cei.12144Willemen M.J. Mantel-Teeuwisse A.K. Straus S.M. Meyboom R.H. Egberts T.C. Leufkens H.G.Use of dipeptidyl peptidase-4 inhibitors and the reporting of infections: a disproportionality analysis in the World Health Organization VigiBase.
Diabetes Care. 34: 369-374https://doi.org/10.2337/dc10-1771Gorricho J. Garjón J. Alonso A. Celaya M.C. Saiz L.C. Erviti J. et al.Use of oral antidiabetic agents and risk of community-acquired pneumonia: a nested case–control study.
Br J Clin Pharmacol. 83: 2034-2044https://doi.org/10.1111/bcp.13288Li Y. Zhang Z. Yang L. Lian X. Xie Y. Li S. et al.The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike.
IScience. 23https://doi.org/10.1016/j.isci.2020.101160Raj V.S. Mou H. Smits S.L. Dekkers D.H.W. Müller M.A. Dijkman R. et al.Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC.
Nature. 495: 251-254https://doi.org/10.1038/nature12005Dalan R. Ang L.W. Tan W.Y.T. Fong S.-W. Tay W.C. Chan Y.-H. et al.The association of hypertension and diabetes pharmacotherapy with COVID-19 severity and immune signatures: an observational study.
Eur Heart J Cardiovasc Pharmacother. https://doi.org/10.1093/ehjcvp/pvaa098Zhou J.H. Wu B. Wang W.X. Lei F. Cheng X. Qin J.J. et al.No significant association between dipeptidyl peptidase-4 inhibitors and adverse outcomes of COVID-19.
World J Clin Cases. 8: 5576-5588https://doi.org/10.12998/wjcc.v8.i22.5576Solerte S.B. D'Addio F. Trevisan R. Lovati E. Rossi A. Pastore I. et al.Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and covid-19: a multicenter case-control retrospective observational study.
Diabetes Care. 43: 2999-3006https://doi.org/10.2337/dc20-1521Rakhmat I.I. Kusmala Y.Y. Handayani D.R. Juliastuti H. Nawangsih E.N. Wibowo A. et al.Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19) – a systematic review, meta-analysis, and meta-regression.
Diabetes Metab Syndr Clin Res Rev. 15: 777-782https://doi.org/10.1016/j.dsx.2021.03.027Lim S. Kim K.M. Nauck M.A.Glucagon-like Peptide-1 receptor agonists and cardiovascular events: class effects versus individual patterns.
Trends Endocrinol Metab. 29: 238-248https://doi.org/10.1016/j.tem.2018.01.011Arakawa M. Mita T. Azuma K. Ebato C. Goto H. Nomiyama T. et al.Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4.
Diabetes. 59: 1030-1037https://doi.org/10.2337/db09-1694Ceriello A. Novials A. Ortega E. Canivell S. La Sala L. Pujadas G. et al.Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes.
Diabetes Care. 36: 2346-2350https://doi.org/10.2337/dc12-2469Nauck M.A. Meier J.J. Cavender M.A. El Aziz M.A. Drucker D.J.Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors.
Circulation. 136: 849-870https://doi.org/10.1161/CIRCULATIONAHA.117.028136Han J.H. Oh T.J. Lee G. Maeng H.J. Lee D.H. Kim K.M. et al.The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE −/− mice fed a western diet.
Diabetologia. 60: 364-376https://doi.org/10.1007/s00125-016-4158-2Garvey W.T. Van Gaal L. Leiter L.A. Vijapurkar U. List J. Cuddihy R. et al.Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes.
Metabolism. 85: 32-37https://doi.org/10.1016/j.metabol.2018.02.002Hahn K. Ejaz A.A. Kanbay M. Lanaspa M.A. Johnson R.J.Acute kidney injury from SGLT2 inhibitors: potential mechanisms.
Nat Rev Nephrol. 12: 711-712https://doi.org/10.1038/nrneph.2016.159The mode of action of thiazolidinediones.
Diabetes Metab Res Rev. 18: S10-S15https://doi.org/10.1002/dmrr.249Li A.C. Brown K.K. Silvestre M.J. Willson T.M. Palinski W. Glass C.K.Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice.
J Clin Invest. 106: 523-531
Comments (0)