Diabetes and COVID-19: The past, the present, and the future

Saeedi P. Petersohn I. Salpea P. Malanda B. Karuranga S. Unwin N. et al.

Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition.

Diabetes Res Clin Pract. : 157https://doi.org/10.1016/j.diabres.2019.107843Huang C. Wang Y. Li X. Ren L. Zhao J. Hu Y. et al.

Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.

Lancet. 395: 497-506https://doi.org/10.1016/S0140-6736(20)30183-5Zhou F. Yu T. Du R. Fan G. Liu Y. Liu Z. et al.

Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.

Lancet. 395: 1054-1062https://doi.org/10.1016/S0140-6736(20)30566-3Huang I. Lim M.A. Pranata R.

Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia – a systematic review, meta-analysis, and meta-regression: diabetes and COVID-19.

Diabetes Metab Syndr Clin Res Rev. 14: 395-403https://doi.org/10.1016/j.dsx.2020.04.018Grasselli G. Zangrillo A. Zanella A. Antonelli M. Cabrini L. Castelli A. et al.

Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy.

JAMA J Am Med Assoc. 323: 1574-1581https://doi.org/10.1001/jama.2020.5394Richardson S. Hirsch J.S. Narasimhan M. Crawford J.M. McGinn T. Davidson K.W. et al.

Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area.

JAMA J Am Med Assoc. 323: 2052-2059https://doi.org/10.1001/jama.2020.6775Kulcsar K.A. Coleman C.M. Beck S.E. Frieman M.B.

Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection.

JCI Insight. 4https://doi.org/10.1172/jci.insight.131774Jafar N. Edriss H. Nugent K.

The effect of short-term hyperglycemia on the innate immune system.

Am J Med Sci. 351: 201-211https://doi.org/10.1016/j.amjms.2015.11.011Lecube A. Pachón G. Petriz J. Hernández C. Simó R.

Phagocytic activity is impaired in type 2 diabetes mellitus and increases after metabolic improvement.

PLoS One. 6https://doi.org/10.1371/journal.pone.0023366

COVID-19 pandemic, coronaviruses, and diabetes mellitus.

Am J Physiol Endocrinol Metab. 318: E736-E741https://doi.org/10.1152/ajpendo.00124.2020

Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: a Mendelian randomization analysis highlights tentative relevance of diabetes-related traits.

Diabetes Care. 43: 1416-1426https://doi.org/10.2337/dc20-0643Zhang H. Penninger J.M. Li Y. Zhong N. Slutsky A.S.

Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target.

Intensive Care Med. 46: 586-590https://doi.org/10.1007/s00134-020-05985-9Li F. Li W. Farzan M. Harrison S.C.

Structural biology: structure of SARS coronavirus spike receptor-binding domain complexed with receptor.

Science (80- ). 309: 1864-1868https://doi.org/10.1126/science.1116480Walls A.C. Park Y.J. Tortorici M.A. Wall A. McGuire A.T. Veesler D.

Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein.

Cell. 181: 281-292.e6https://doi.org/10.1016/j.cell.2020.02.058Lim S. Bae J.H. Kwon H.S. Nauck M.A.

COVID-19 and diabetes mellitus: from pathophysiology to clinical management.

Nat Rev Endocrinol. 17: 11-30https://doi.org/10.1038/s41574-020-00435-4Codo A.C. Davanzo G.G. Monteiro L. de B. de Souza G.F. Muraro S.P. Virgilio-da-Silva J.V. et al.

Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis.

Cell Metab. 32: 437-446.e5https://doi.org/10.1016/j.cmet.2020.07.007Kim J.H. Park K. Lee S.B. Kang S. Park J.S. Ahn C.W. et al.

Relationship between natural killer cell activity and glucose control in patients with type 2 diabetes and prediabetes.

J Diabetes Investig. 10: 1223-1228https://doi.org/10.1111/jdi.13002

Diabetes, obesity, metabolism, and SARS-CoV-2 infection: the end of the beginning.

Cell Metab. 33https://doi.org/10.1016/j.cmet.2021.01.016

Diabetes epidemiology in the covid-19 pandemic.

Diabetes Care. 43: 1690-1694https://doi.org/10.2337/dc20-1295Barrera F.J. Shekhar S. Wurth R. Moreno-Pena P.J. Ponce O.J. Hajdenberg M. et al.

Prevalence of diabetes and hypertension and their associated risks for poor outcomes in Covid-19 patients.

J Endocr Soc. 4https://doi.org/10.1210/jendso/bvaa102Barron E. Bakhai C. Kar P. Weaver A. Bradley D. Ismail H. et al.

Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study.

Lancet Diabetes Endocrinol. 8: 813-822https://doi.org/10.1016/S2213-8587(20)30272-2Holman N. Knighton P. Kar P. O'Keefe J. Curley M. Weaver A. et al.

Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study.

Lancet Diabetes Endocrinol. 8: 823-833https://doi.org/10.1016/S2213-8587(20)30271-0McGurnaghan S.J. Weir A. Bishop J. Kennedy S. Blackbourn L.A.K. McAllister D.A. et al.

Risks of and risk factors for COVID-19 disease in people with diabetes: a cohort study of the total population of Scotland.

Lancet Diabetes Endocrinol. 9: 82-93https://doi.org/10.1016/S2213-8587(20)30405-8Dennis J.M. Mateen B.A. Sonabend R. Thomas N.J. Patel K.A. Hattersley A.T. et al.

Type 2 diabetes and covid-19– related mortality in the critical care setting: a national cohort study in England, March–July 2020.

Diabetes Care. 44: 50-57https://doi.org/10.2337/dc20-1444Cariou B. Hadjadj S. Wargny M. Pichelin M. Al-Salameh A. Allix I. et al.

Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study.

Diabetologia. 63: 1500-1515https://doi.org/10.1007/s00125-020-05180-xWargny M. Potier L. Gourdy P. Pichelin M. Amadou C. Benhamou P.-Y. et al.

Predictors of hospital discharge and mortality in patients with diabetes and COVID-19: updated results from the nationwide CORONADO study.

Diabetologia. 64: 778-794https://doi.org/10.1007/s00125-020-05351-wWargny M. Gourdy P. Ludwig L. Seret-Bégué D. Bourron O. Darmon P. et al.

Type 1 diabetes in people hospitalized for covid-19: new insights from the coronado study.

Diabetes Care. 43: e174-e177https://doi.org/10.2337/dc20-1217O'Malley G. Ebekozien O. Desimone M. Pinnaro C.T. Roberts A. Polsky S. et al.

COVID-19 hospitalization in adults with type 1 diabetes: results from the T1D exchange multicenter surveillance study.

J Clin Endocrinol Metab. 106: e936-e942https://doi.org/10.1210/clinem/dgaa825Goyal P. Choi J.J. Pinheiro L.C. Schenck E.J. Chen R. Jabri A. et al.

Clinical characteristics of Covid-19 in New York City.

N Engl J Med. 382: 2372-2374https://doi.org/10.1056/nejmc2010419Pranata R. Lim M.A. Yonas E. Vania R. Lukito A.A. Siswanto B.B. et al.

Body mass index and outcome in patients with COVID-19: a dose–response meta-analysis.

Diabetes Metab. 47https://doi.org/10.1016/j.diabet.2020.07.005Zhu Z. Hasegawa K. Ma B. Fujiogi M. Camargo C.A. Liang L.

Association of obesity and its genetic predisposition with the risk of severe COVID-19: analysis of population-based cohort data.

Metabolism. 112https://doi.org/10.1016/j.metabol.2020.154345Apicella M. Campopiano M.C. Mantuano M. Mazoni L. Coppelli A. Del Prato S.

COVID-19 in people with diabetes: understanding the reasons for worse outcomes.

Lancet Diabetes Endocrinol. 8: 782-792https://doi.org/10.1016/S2213-8587(20)30238-2Al-Goblan A.S. Al-Alfi M.A. Khan M.Z.

Mechanism linking diabetes mellitus and obesity.

Diabetes Metab Syndr Obes Targets Ther. 7: 587-591https://doi.org/10.2147/DMSO.S67400Stefan N. Birkenfeld A.L. Schulze M.B. Ludwig D.S.

Obesity and impaired metabolic health in patients with COVID-19.

Nat Rev Endocrinol. 16: 341-342https://doi.org/10.1038/s41574-020-0364-6

Is adipose tissue a reservoir for viral spread, immune activation, and cytokine amplification in coronavirus disease 2019?.

Obesity. 28: 1191-1194https://doi.org/10.1002/oby.22843Sattar N. McInnes I.B. McMurray J.J.V.

Obesity is a risk factor for severe COVID-19 infection: multiple potential mechanisms.

Circulation. 142: 4-6https://doi.org/10.1161/CIRCULATIONAHA.120.047659Dandona P. Aljada A. Chaudhuri A. Mohanty P. Garg R.

Metabolic syndrome.

Circulation. 111: 1448-1454https://doi.org/10.1161/01.CIR.0000158483.13093.9DGhanim H. Aljada A. Hofmeyer D. Syed T. Mohanty P. Dandona P.

Circulating mononuclear cells in the obese are in a proinflammatory state.

Circulation. 110: 1564-1571https://doi.org/10.1161/01.CIR.0000142055.53122.FA

Does coronavirus disease 2019 disprove the obesity paradox in acute respiratory distress syndrome?.

Obesity. 28: 1007https://doi.org/10.1002/oby.22835Smati S. Tramunt B. Wargny M. Caussy C. Gaborit B. Vatier C. et al.

Relationship between obesity and severe COVID-19 outcomes in patients with type 2 diabetes: results from the CORONADO study.

Diabetes Obes Metab. 23: 391-403https://doi.org/10.1111/dom.14228Watanabe M. Risi R. Tuccinardi D. Baquero C.J. Manfrini S. Gnessi L.

Obesity and SARS-CoV-2: a population to safeguard.

Diabetes Metab Res Rev. 36https://doi.org/10.1002/dmrr.3325Watanabe M. Caruso D. Tuccinardi D. Risi R. Zerunian M. Polici M. et al.

Visceral fat shows the strongest association with the need of intensive care in patients with COVID-19.

Metabolism. 111https://doi.org/10.1016/j.metabol.2020.154319Pranata R. Lim M.A. Huang I. Yonas E. Henrina J. Vania R. et al.

Visceral adiposity, subcutaneous adiposity, and severe coronavirus disease-2019 (COVID-19): systematic review and meta-analysis.

Clin Nutr ESPEN. https://doi.org/10.1016/j.clnesp.2021.04.001Bello-Chavolla O.Y. Bahena-López J.P. Antonio-Villa N.E. Vargas-Vázquez A. González-Díaz A. Márquez-Salinas A. et al.

Predicting mortality due to SARS-CoV-2: a mechanistic score relating obesity and diabetes to COVID-19 outcomes in Mexico.

J Clin Endocrinol Metab. 105https://doi.org/10.1210/clinem/dgaa346Korytkowski M. Antinori-Lent K. Drincic A. Hirsch I.B. McDonnell M.E. Rushakoff R. et al.

A pragmatic approach to inpatient diabetes management during the COVID-19 pandemic.

J Clin Endocrinol Metab. 105: 1-12https://doi.org/10.1210/clinem/dgaa342Wesorick D. O'Malley C. Rushakoff R. Larsen K. Magee M.

Management of diabetes and hyperglycemia in the hospital: a practical guide to subcutaneous insulin use in the non-critically ill, adult patient.

J Hosp Med. 3https://doi.org/10.1002/jhm.353Bornstein S.R. Rubino F. Khunti K. Mingrone G. Hopkins D. Birkenfeld A.L. et al.

Practical recommendations for the management of diabetes in patients with COVID-19.

Lancet Diabetes Endocrinol. 8: 546-550https://doi.org/10.1016/S2213-8587(20)30152-2

How diabetes management is adapting amid the COVID-19 pandemic.

Lancet Diabetes Endocrinol. 8: 571https://doi.org/10.1016/S2213-8587(20)30181-9

COVID-19, type 1 diabetes, and technology: why paediatric patients are leading the way.

Lancet Diabetes Endocrinol. 8: 465-467https://doi.org/10.1016/S2213-8587(20)30155-8Ushigome E. Yamazaki M. Hamaguchi M. Ito T. Matsubara S. Tsuchido Y. et al.

Usefulness and safety of remote continuous glucose monitoring for a severe COVID-19 patient with diabetes.

Diabetes Technol Ther. 23: 78-80https://doi.org/10.1089/dia.2020.0237

The silver lining to COVID-19: avoiding diabetic ketoacidosis admissions with telehealth.

Diabetes Technol Ther. 22: 449-453https://doi.org/10.1089/dia.2020.0187Garg S.K. Rodbard D. Hirsch I.B. Forlenza G.P.

Managing new-onset type 1 diabetes during the COVID-19 pandemic: challenges and opportunities.

Diabetes Technol Ther. 22: 431-439https://doi.org/10.1089/dia.2020.0161Gal R.L. Cohen N.J. Kruger D. Beck R.W. Bergenstal R.M. Calhoun P. et al.

Diabetes telehealth solutions: improving self-management through remote initiation of continuous glucose monitoring.

J Endocr Soc. 4https://doi.org/10.1210/jendso/bvaa076Agarwal S. Mathew J. Davis G.M. Shephardson A. Levine A. Louard R. et al.

Continuous glucose monitoring in the intensive care unit during the COVID-19 pandemic.

Diabetes Care. 44dc202219https://doi.org/10.2337/dc20-2219Garelli F. Rosales N. Fushimi E. Arambarri D. Mendoza L. De Battista H. et al.

Remote glucose monitoring platform for multiple simultaneous patients at coronavirus disease 2019 intensive care units: case report including adults and children.

Diabetes Technol Ther. https://doi.org/10.1089/dia.2020.0556Bode B. Garrett V. Messler J. McFarland R. Crowe J. Booth R. et al.

Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States.

J Diabetes Sci Technol. 14: 813-821https://doi.org/10.1177/1932296820924469Wu J. Huang J. Zhu G. Wang Q. Lv Q. Huang Y. et al.

Elevation of blood glucose level predicts worse outcomes in hospitalized patients with COVID-19: a retrospective cohort study.

BMJ Open Diabetes Res Care. 8: 1476https://doi.org/10.1136/bmjdrc-2020-001476Li H. Tian S. Chen T. Cui Z. Shi N. Zhong X. et al.

Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID-19.

Diabetes Obes Metab. 22: 1897-1906https://doi.org/10.1111/dom.14099Zhu L. She Z.G. Cheng X. Qin J.J. Zhang X.J. Cai J. et al.

Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes.

Cell Metab. 31: 1068-1077.e3https://doi.org/10.1016/j.cmet.2020.04.021Zhang B. Liu S. Zhang L. Dong Y. Zhang S.

Admission fasting blood glucose predicts 30-day poor outcome in patients hospitalized for COVID-19 pneumonia.

Diabetes Obes Metab. 22: 1955-1957https://doi.org/10.1111/dom.14132Zhu B. Jin S. Wu L. Hu C. Wang Z. Bu L. et al.

J-shaped association between fasting blood glucose levels and COVID-19 severity in patients without diabetes.

Diabetes Res Clin Pract. 168https://doi.org/10.1016/j.diabres.2020.108381Sardu C. D'Onofrio N. Balestrieri M.L. Barbieri M. Rizzo M.R. Messina V. et al.

Outcomes in patients with hyperglycemia affected by COVID-19: can we do more on glycemic control?.

Diabetes Care. 43: 1408-1415https://doi.org/10.2337/dc20-0723Coppelli A. Giannarelli R. Aragona M. Penno G. Falcone M. Tiseo G. et al.

Hyperglycemia at hospital admission is associated with severity of the prognosis in patients hospitalized for COVID-19: the Pisa COVID-19 study.

Diabetes Care. 43: 2345-2348https://doi.org/10.2337/dc20-1380Lazarus G. Audrey J. Wangsaputra V.K. Tamara A. Tahapary D.L.

High admission blood glucose independently predicts poor prognosis in COVID-19 patients: a systematic review and dose-response meta-analysis.

Diabetes Res Clin Pract. 171https://doi.org/10.1016/j.diabres.2020.108561

Coronavirus infections and type 2 diabetes-shared pathways with therapeutic implications.

Endocr Rev. 41https://doi.org/10.1210/endrev/bnaa011Cameron A.R. Morrison V.L. Levin D. Mohan M. Forteath C. Beall C. et al.

Anti-inflammatory effects of metformin irrespective of diabetes status.

Circ Res. 119: 652-665https://doi.org/10.1161/CIRCRESAHA.116.308445Lukito A.A. Pranata R. Henrina J. Lim M.A. Lawrensia S. Suastika K.

The effect of metformin consumption on mortality in hospitalized COVID-19 patients: a systematic review and meta-analysis.

Diabetes Metab Syndr Clin Res Rev. 14: 2177-2183https://doi.org/10.1016/j.dsx.2020.11.006Mulvihill E.E. Drucker D.J.

Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors.

Endocr Rev. 35: 992-1019https://doi.org/10.1210/er.2014-1035

The biology of incretin hormones.

Cell Metab. 3: 153-165https://doi.org/10.1016/j.cmet.2006.01.004Lambeir A.M. Durinx C. Scharpé S. De Meester I.

Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV.

Crit Rev Clin Lab Sci. 40: 209-294https://doi.org/10.1080/713609354Metzemaekers M. Van Damme J. Mortier A. Proost P.

Regulation of chemokine activity - a focus on the role of dipeptidyl peptidase IV/CD26.

Front Immunol. 7https://doi.org/10.3389/fimmu.2016.00483Ghorpade D.S. Ozcan L. Zheng Z. Nicoloro S.M. Shen Y. Chen E. et al.

Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance.

Nature. 555: 673-677https://doi.org/10.1038/nature26138Price J.D. Linder G. Li W.P. Zimmermann B. Rother K.I. Malek R. et al.

Effects of short-term sitagliptin treatment on immune parameters in healthy individuals, a randomized placebo-controlled study.

Clin Exp Immunol. 174: 120-128https://doi.org/10.1111/cei.12144Willemen M.J. Mantel-Teeuwisse A.K. Straus S.M. Meyboom R.H. Egberts T.C. Leufkens H.G.

Use of dipeptidyl peptidase-4 inhibitors and the reporting of infections: a disproportionality analysis in the World Health Organization VigiBase.

Diabetes Care. 34: 369-374https://doi.org/10.2337/dc10-1771Gorricho J. Garjón J. Alonso A. Celaya M.C. Saiz L.C. Erviti J. et al.

Use of oral antidiabetic agents and risk of community-acquired pneumonia: a nested case–control study.

Br J Clin Pharmacol. 83: 2034-2044https://doi.org/10.1111/bcp.13288Li Y. Zhang Z. Yang L. Lian X. Xie Y. Li S. et al.

The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike.

IScience. 23https://doi.org/10.1016/j.isci.2020.101160Raj V.S. Mou H. Smits S.L. Dekkers D.H.W. Müller M.A. Dijkman R. et al.

Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC.

Nature. 495: 251-254https://doi.org/10.1038/nature12005Dalan R. Ang L.W. Tan W.Y.T. Fong S.-W. Tay W.C. Chan Y.-H. et al.

The association of hypertension and diabetes pharmacotherapy with COVID-19 severity and immune signatures: an observational study.

Eur Heart J Cardiovasc Pharmacother. https://doi.org/10.1093/ehjcvp/pvaa098Zhou J.H. Wu B. Wang W.X. Lei F. Cheng X. Qin J.J. et al.

No significant association between dipeptidyl peptidase-4 inhibitors and adverse outcomes of COVID-19.

World J Clin Cases. 8: 5576-5588https://doi.org/10.12998/wjcc.v8.i22.5576Solerte S.B. D'Addio F. Trevisan R. Lovati E. Rossi A. Pastore I. et al.

Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and covid-19: a multicenter case-control retrospective observational study.

Diabetes Care. 43: 2999-3006https://doi.org/10.2337/dc20-1521Rakhmat I.I. Kusmala Y.Y. Handayani D.R. Juliastuti H. Nawangsih E.N. Wibowo A. et al.

Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19) – a systematic review, meta-analysis, and meta-regression.

Diabetes Metab Syndr Clin Res Rev. 15: 777-782https://doi.org/10.1016/j.dsx.2021.03.027Lim S. Kim K.M. Nauck M.A.

Glucagon-like Peptide-1 receptor agonists and cardiovascular events: class effects versus individual patterns.

Trends Endocrinol Metab. 29: 238-248https://doi.org/10.1016/j.tem.2018.01.011Arakawa M. Mita T. Azuma K. Ebato C. Goto H. Nomiyama T. et al.

Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4.

Diabetes. 59: 1030-1037https://doi.org/10.2337/db09-1694Ceriello A. Novials A. Ortega E. Canivell S. La Sala L. Pujadas G. et al.

Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes.

Diabetes Care. 36: 2346-2350https://doi.org/10.2337/dc12-2469Nauck M.A. Meier J.J. Cavender M.A. El Aziz M.A. Drucker D.J.

Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors.

Circulation. 136: 849-870https://doi.org/10.1161/CIRCULATIONAHA.117.028136Han J.H. Oh T.J. Lee G. Maeng H.J. Lee D.H. Kim K.M. et al.

The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE −/− mice fed a western diet.

Diabetologia. 60: 364-376https://doi.org/10.1007/s00125-016-4158-2Garvey W.T. Van Gaal L. Leiter L.A. Vijapurkar U. List J. Cuddihy R. et al.

Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes.

Metabolism. 85: 32-37https://doi.org/10.1016/j.metabol.2018.02.002Hahn K. Ejaz A.A. Kanbay M. Lanaspa M.A. Johnson R.J.

Acute kidney injury from SGLT2 inhibitors: potential mechanisms.

Nat Rev Nephrol. 12: 711-712https://doi.org/10.1038/nrneph.2016.159

The mode of action of thiazolidinediones.

Diabetes Metab Res Rev. 18: S10-S15https://doi.org/10.1002/dmrr.249Li A.C. Brown K.K. Silvestre M.J. Willson T.M. Palinski W. Glass C.K.

Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice.

J Clin Invest. 106: 523-531

Comments (0)

No login
gif
Back To Top