Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, Gramfort A, Thirion B, Varoquaux G (2014) Machine learning for neuroimaging with scikit-learn. Front Neuroinformatics 8. https://doi.org/10.3389/fninf.2014.00014
Akram H, Dayal V, Mahlknecht P, Georgiev D, Hyam J, Foltynie T, Limousin P, De Vita E, Jahanshahi M, Ashburner J, Behrens T, Hariz M, Zrinzo L (2018) Connectivity derived thalamic segmentation in deep brain stimulation for tremor. NeuroImage: Clin 18:130–142. https://doi.org/10.1016/j.nicl.2018.01.008
Albert ST, Shadmehr R (2018) Estimating properties of the fast and slow adaptive processes during sensorimotor adaptation. J Neurophysiol (Vol 119(4):1367–1393. https://doi.org/10.1152/jn.00197.2017
Albert ST, Jang J, Sheahan HR, Teunissen L, Vandevoorde K, Herzfeld DJ, Shadmehr R (2021) An implicit memory of errors limits human sensorimotor adaptation. In Nat Hum Behav (Vol. 5, Issue 7, pp. 920–934). https://doi.org/10.1038/s41562-020-01036-x
Amiez C, Joseph J, Procyk E (2005) Anterior cingulate error-related activity is modulated by predicted reward. Eur J Neurosci 21(12):3447–3452. https://doi.org/10.1111/j.1460-9568.2005.04170.x
Article PubMed PubMed Central Google Scholar
Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20(2):870–888. https://doi.org/10.1016/S1053-8119(03)00336-7
Avants B, Epstein C, Grossman M, Gee J (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41. https://doi.org/10.1016/j.media.2007.06.004
Article PubMed CAS Google Scholar
Avraham G, Morehead JR, Kim HE, Ivry RB (2021) Reexposure to a sensorimotor perturbation produces opposite effects on explicit and implicit learning processes. PLoS Biol 19(3):e3001147. https://doi.org/10.1371/journal.pbio.3001147
Article PubMed PubMed Central CAS Google Scholar
Baraduc P, Lang N, Rothwell JC, Wolpert DM (2004) Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex. Curr Biol 14(3):252–256. https://doi.org/10.1016/j.cub.2004.01.033
Article PubMed CAS Google Scholar
Bédard P, Sanes JN (2014) Brain representations for acquiring and recalling visual-motor adaptations. In Neuroimage (Vol. 101, pp. 225–235). https://doi.org/10.1016/j.neuroimage.2014.07.009
Bernardi, N.F., Van Vugt, F.T., Valle-Mena, R.R., Vahdat, S., Ostry, D.J. Error-related Persistence of Motor Activity in Resting-state Networks. (2018). Journal of Cognitive Neuroscience, 30(12), 1883-1901.
Bonini F, Burle B, Liégeois-Chauvel C, Régis J, Chauvel P, Vidal F (2014) Action monitoring and medial frontal cortex: leading role of supplementary motor area. Science 343(6173):888–891. https://doi.org/10.1126/science.1247412
Article PubMed CAS Google Scholar
Brooks JX, Carriot J, Cullen KE (2015) Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion. Nat Neurosci 18(9):1310–1317. https://doi.org/10.1038/nn.4077
Article PubMed PubMed Central CAS Google Scholar
Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140–151. https://doi.org/10.1002/hbm.1048
Article PubMed PubMed Central CAS Google Scholar
Cassady K, Ruitenberg M, Koppelmans V, Reuter-Lorenz P, De Dios Y, Gadd N, Wood S, Castenada R, Kofman R, Bloomberg I, Mulavara J, A., Seidler R (2018) Neural predictors of sensorimotor adaptation rate and savings. In Hum Brain Mapp (Vol. 39, Issue 4, pp. 1516–1531). https://doi.org/10.1002/hbm.23924
Chen H, Hua SE, Smith MA, Lenz FA, Shadmehr R (2006) Effects of human cerebellar thalamus disruption on adaptive control of reaching. Cereb Cortex 16(10):1462–1473. https://doi.org/10.1093/cercor/bhj087
Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K, Shinohara RT, Elliott MA, Eickhoff SB, Davatzikos C, Gur RC, Gur RE, Bassett DS, Satterthwaite TD (2017) Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. In Neuroimage (Vol. 154, pp. 174–187). https://doi.org/10.1016/j.neuroimage.2017.03.020
Cisler JM, Bush K, Steele JS (2014) A comparison of statistical methods for detecting context-modulated functional connectivity in fMRI. NeuroImage 84:1042–1052. https://doi.org/10.1016/j.neuroimage.2013.09.018
Cohen J (1988) Statistical power analysis for the behavioral sciences. Routledge Academic, NewYork, NY
Coltman, S.K., Cashaback, J.G.A., Gribble, P.L. (2019). Both fast and slow learning processes contribute to savings following sensorimotor adaptation. Journal of Neurophysiology, 121(4), 1575-1583.
Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173. https://doi.org/10.1006/cbmr.1996.0014
Article PubMed CAS Google Scholar
Dale AM, Fischl B, Sereno MI (1999) Cortical Surface-Based Anal NeuroImage 9(2):179–194. https://doi.org/10.1006/nimg.1998.0395
Darainy M, Manning TF, Ostry DJ (2023) Disruption of somatosensory cortex impairs motor learning and retention. J Neurophysiol 130(6):1521–1528. https://doi.org/10.1152/jn.00231.2023
Darian-Smith C, Darian‐Smith I, Cheema SS (1990) Thalamic projections to sensorimotor cortex in the macaque monkey: use of multiple retrograde fluorescent tracers. J Comp Neurol 299(1):17–46. https://doi.org/10.1002/cne.902990103
Article PubMed CAS Google Scholar
Debas K, Carrier J, Orban P, Barakat M, Lungu O, Vandewalle G, Hadj Tahar A, Bellec P, Karni A, Ungerleider LG, Benali H, Doyon J (2010) Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. Proc Natl Acad Sci U S (Vol 107:17839–17844. https://doi.org/10.1073/pnas.1013176107
Della-Maggiore V, Villalta JI, Kovacevic N, McIntosh AR (2017) Functional Evidence for Memory Stabilization in Sensorimotor Adaptation: A 24-h Resting-State fMRI Study. In Cereb Cortex (Vol. 27, Issue 3, pp. 1748–1757). https://doi.org/10.1093/cercor/bhv289
Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J Neurosci (Vol 25:9919–9931. https://doi.org/10.1523/JNEUROSCI.1874-05.2005
Donchin O, Francis JT, Shadmehr R (2003) Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control. J Neurosci (Vol 23:9032–9045. https://doi.org/10.1523/JNEUROSCI.23-27-09032.2003
Dum RP, Strick PL (2003) An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 89(1):634–639. https://doi.org/10.1152/jn.00626.2002
Ebrahimi S, Ostry DJ (2024) The human somatosensory cortex contributes to the encoding of newly learned movements. Proc Natl Acad Sci 121(6):e2316294121. https://doi.org/10.1073/pnas.2316294121
Article PubMed PubMed Central CAS Google Scholar
Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: why fMRI inferences for Spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S (Vol 113(28):7900–7905. https://doi.org/10.1073/pnas.1602413113
Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, Kent JD, Goncalves M, DuPre E, Snyder M, Oya H, Ghosh SS, Wright J, Durnez J, Poldrack RA, Gorgolewski KJ (2019) fMRIPrep: A robust preprocessing pipeline for functional MRI. Nat Methods (Vol 16(1):111–116. https://doi.org/10.1038/s41592-018-0235-4
Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. In Behav Res Methods (Vol. 39, Issue 2, pp. 175–191). https://doi.org/10.3758/bf03193146
Fonov V, Evans A, McKinstry R, Almli C, Collins D (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47:S102. https://doi.org/10.1016/S1053-8119(09)70884-5
Gale DJ, Areshenkoff CN, Standage DI, Nashed JY, Markello RD, Flanagan JR, Smallwood J, Gallivan JP (2022) Distinct patterns of cortical manifold expansion and contraction underlie human sensorimotor adaptation. Proc Natl Acad Sci U S (Vol 119(52):e2209960119. https://doi.org/10.1073/pnas.2209960119
Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P (2011) Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cerebellum learns. In Cereb Cortex (Vol. 21, Issue 8, pp. 1761–1770). https://doi.org/10.1093/cercor/bhq246
Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, Flandin G, Ghosh SS, Glatard T, Halchenko YO, Handwerker DA, Hanke M, Keator D, Li X, Michael Z, Maumet C, Nichols BN, Nichols TE, Pellman J, Poldrack RA (2016) The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data (Vol 3:160044. https://doi.org/10.1038/sdata.2016.44
Gorgolewski KJ, Esteban O, Ellis DG, Notter MP, Ziegler E, Johnson H, Hamalainen C, Yvernault B, Burns C, Manhães-Savio A, Jarecka D, Markiewicz CJ, Salo T, Clark D, Waskom M, Wong J, Modat M, Dewey BE, Clark MG, Ghosh S (2017) Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python. 0.13.1 (Version 0.13.1) [Computer software]. https://doi.org/10.5281/ZENODO.581704. Zenodo
Grafton ST, Schmitt P, Van Horn J, Diedrichsen J (2008) Neural substrates of visuomotor learning based on improved feedback control and prediction. In Neuroimage (Vol. 39, Issue 3, pp. 1383–1395). https://doi.org/10.1016/j.neuroimage.2007.09.062
Greve DN, Fischl B (2009) Accurate and robust brain image alignment using boundary-based registra
Comments (0)