Savings in visuomotor learning are associated with connectivity changes within a cerebello-thalamo-cortical network encoding movement errors

Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, Gramfort A, Thirion B, Varoquaux G (2014) Machine learning for neuroimaging with scikit-learn. Front Neuroinformatics 8. https://doi.org/10.3389/fninf.2014.00014

Akram H, Dayal V, Mahlknecht P, Georgiev D, Hyam J, Foltynie T, Limousin P, De Vita E, Jahanshahi M, Ashburner J, Behrens T, Hariz M, Zrinzo L (2018) Connectivity derived thalamic segmentation in deep brain stimulation for tremor. NeuroImage: Clin 18:130–142. https://doi.org/10.1016/j.nicl.2018.01.008

Article  PubMed  Google Scholar 

Albert ST, Shadmehr R (2018) Estimating properties of the fast and slow adaptive processes during sensorimotor adaptation. J Neurophysiol (Vol 119(4):1367–1393. https://doi.org/10.1152/jn.00197.2017

Article  Google Scholar 

Albert ST, Jang J, Sheahan HR, Teunissen L, Vandevoorde K, Herzfeld DJ, Shadmehr R (2021) An implicit memory of errors limits human sensorimotor adaptation. In Nat Hum Behav (Vol. 5, Issue 7, pp. 920–934). https://doi.org/10.1038/s41562-020-01036-x

Amiez C, Joseph J, Procyk E (2005) Anterior cingulate error-related activity is modulated by predicted reward. Eur J Neurosci 21(12):3447–3452. https://doi.org/10.1111/j.1460-9568.2005.04170.x

Article  PubMed  PubMed Central  Google Scholar 

Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20(2):870–888. https://doi.org/10.1016/S1053-8119(03)00336-7

Article  PubMed  Google Scholar 

Avants B, Epstein C, Grossman M, Gee J (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41. https://doi.org/10.1016/j.media.2007.06.004

Article  PubMed  CAS  Google Scholar 

Avraham G, Morehead JR, Kim HE, Ivry RB (2021) Reexposure to a sensorimotor perturbation produces opposite effects on explicit and implicit learning processes. PLoS Biol 19(3):e3001147. https://doi.org/10.1371/journal.pbio.3001147

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baraduc P, Lang N, Rothwell JC, Wolpert DM (2004) Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex. Curr Biol 14(3):252–256. https://doi.org/10.1016/j.cub.2004.01.033

Article  PubMed  CAS  Google Scholar 

Bédard P, Sanes JN (2014) Brain representations for acquiring and recalling visual-motor adaptations. In Neuroimage (Vol. 101, pp. 225–235). https://doi.org/10.1016/j.neuroimage.2014.07.009

Bernardi, N.F., Van Vugt, F.T., Valle-Mena, R.R., Vahdat, S., Ostry, D.J. Error-related Persistence of Motor Activity in Resting-state Networks. (2018). Journal of Cognitive Neuroscience, 30(12), 1883-1901.

Bonini F, Burle B, Liégeois-Chauvel C, Régis J, Chauvel P, Vidal F (2014) Action monitoring and medial frontal cortex: leading role of supplementary motor area. Science 343(6173):888–891. https://doi.org/10.1126/science.1247412

Article  PubMed  CAS  Google Scholar 

Brooks JX, Carriot J, Cullen KE (2015) Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion. Nat Neurosci 18(9):1310–1317. https://doi.org/10.1038/nn.4077

Article  PubMed  PubMed Central  CAS  Google Scholar 

Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140–151. https://doi.org/10.1002/hbm.1048

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cassady K, Ruitenberg M, Koppelmans V, Reuter-Lorenz P, De Dios Y, Gadd N, Wood S, Castenada R, Kofman R, Bloomberg I, Mulavara J, A., Seidler R (2018) Neural predictors of sensorimotor adaptation rate and savings. In Hum Brain Mapp (Vol. 39, Issue 4, pp. 1516–1531). https://doi.org/10.1002/hbm.23924

Chen H, Hua SE, Smith MA, Lenz FA, Shadmehr R (2006) Effects of human cerebellar thalamus disruption on adaptive control of reaching. Cereb Cortex 16(10):1462–1473. https://doi.org/10.1093/cercor/bhj087

Article  PubMed  Google Scholar 

Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K, Shinohara RT, Elliott MA, Eickhoff SB, Davatzikos C, Gur RC, Gur RE, Bassett DS, Satterthwaite TD (2017) Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. In Neuroimage (Vol. 154, pp. 174–187). https://doi.org/10.1016/j.neuroimage.2017.03.020

Cisler JM, Bush K, Steele JS (2014) A comparison of statistical methods for detecting context-modulated functional connectivity in fMRI. NeuroImage 84:1042–1052. https://doi.org/10.1016/j.neuroimage.2013.09.018

Article  PubMed  Google Scholar 

Cohen J (1988) Statistical power analysis for the behavioral sciences. Routledge Academic, NewYork, NY

Google Scholar 

Coltman, S.K., Cashaback, J.G.A., Gribble, P.L. (2019). Both fast and slow learning processes contribute to savings following sensorimotor adaptation. Journal of Neurophysiology, 121(4), 1575-1583.

Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173. https://doi.org/10.1006/cbmr.1996.0014

Article  PubMed  CAS  Google Scholar 

Dale AM, Fischl B, Sereno MI (1999) Cortical Surface-Based Anal NeuroImage 9(2):179–194. https://doi.org/10.1006/nimg.1998.0395

Article  CAS  Google Scholar 

Darainy M, Manning TF, Ostry DJ (2023) Disruption of somatosensory cortex impairs motor learning and retention. J Neurophysiol 130(6):1521–1528. https://doi.org/10.1152/jn.00231.2023

Article  PubMed  Google Scholar 

Darian-Smith C, Darian‐Smith I, Cheema SS (1990) Thalamic projections to sensorimotor cortex in the macaque monkey: use of multiple retrograde fluorescent tracers. J Comp Neurol 299(1):17–46. https://doi.org/10.1002/cne.902990103

Article  PubMed  CAS  Google Scholar 

Debas K, Carrier J, Orban P, Barakat M, Lungu O, Vandewalle G, Hadj Tahar A, Bellec P, Karni A, Ungerleider LG, Benali H, Doyon J (2010) Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. Proc Natl Acad Sci U S (Vol 107:17839–17844. https://doi.org/10.1073/pnas.1013176107

Article  Google Scholar 

Della-Maggiore V, Villalta JI, Kovacevic N, McIntosh AR (2017) Functional Evidence for Memory Stabilization in Sensorimotor Adaptation: A 24-h Resting-State fMRI Study. In Cereb Cortex (Vol. 27, Issue 3, pp. 1748–1757). https://doi.org/10.1093/cercor/bhv289

Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J Neurosci (Vol 25:9919–9931. https://doi.org/10.1523/JNEUROSCI.1874-05.2005

Article  CAS  Google Scholar 

Donchin O, Francis JT, Shadmehr R (2003) Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control. J Neurosci (Vol 23:9032–9045. https://doi.org/10.1523/JNEUROSCI.23-27-09032.2003

Article  CAS  Google Scholar 

Dum RP, Strick PL (2003) An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 89(1):634–639. https://doi.org/10.1152/jn.00626.2002

Article  PubMed  Google Scholar 

Ebrahimi S, Ostry DJ (2024) The human somatosensory cortex contributes to the encoding of newly learned movements. Proc Natl Acad Sci 121(6):e2316294121. https://doi.org/10.1073/pnas.2316294121

Article  PubMed  PubMed Central  CAS  Google Scholar 

Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: why fMRI inferences for Spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S (Vol 113(28):7900–7905. https://doi.org/10.1073/pnas.1602413113

Article  CAS  Google Scholar 

Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, Kent JD, Goncalves M, DuPre E, Snyder M, Oya H, Ghosh SS, Wright J, Durnez J, Poldrack RA, Gorgolewski KJ (2019) fMRIPrep: A robust preprocessing pipeline for functional MRI. Nat Methods (Vol 16(1):111–116. https://doi.org/10.1038/s41592-018-0235-4

Article  CAS  Google Scholar 

Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. In Behav Res Methods (Vol. 39, Issue 2, pp. 175–191). https://doi.org/10.3758/bf03193146

Fonov V, Evans A, McKinstry R, Almli C, Collins D (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47:S102. https://doi.org/10.1016/S1053-8119(09)70884-5

Article  Google Scholar 

Gale DJ, Areshenkoff CN, Standage DI, Nashed JY, Markello RD, Flanagan JR, Smallwood J, Gallivan JP (2022) Distinct patterns of cortical manifold expansion and contraction underlie human sensorimotor adaptation. Proc Natl Acad Sci U S (Vol 119(52):e2209960119. https://doi.org/10.1073/pnas.2209960119

Article  CAS  Google Scholar 

Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P (2011) Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cerebellum learns. In Cereb Cortex (Vol. 21, Issue 8, pp. 1761–1770). https://doi.org/10.1093/cercor/bhq246

Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, Flandin G, Ghosh SS, Glatard T, Halchenko YO, Handwerker DA, Hanke M, Keator D, Li X, Michael Z, Maumet C, Nichols BN, Nichols TE, Pellman J, Poldrack RA (2016) The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data (Vol 3:160044. https://doi.org/10.1038/sdata.2016.44

Article  Google Scholar 

Gorgolewski KJ, Esteban O, Ellis DG, Notter MP, Ziegler E, Johnson H, Hamalainen C, Yvernault B, Burns C, Manhães-Savio A, Jarecka D, Markiewicz CJ, Salo T, Clark D, Waskom M, Wong J, Modat M, Dewey BE, Clark MG, Ghosh S (2017) Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python. 0.13.1 (Version 0.13.1) [Computer software]. https://doi.org/10.5281/ZENODO.581704. Zenodo

Grafton ST, Schmitt P, Van Horn J, Diedrichsen J (2008) Neural substrates of visuomotor learning based on improved feedback control and prediction. In Neuroimage (Vol. 39, Issue 3, pp. 1383–1395). https://doi.org/10.1016/j.neuroimage.2007.09.062

Greve DN, Fischl B (2009) Accurate and robust brain image alignment using boundary-based registra

Comments (0)

No login
gif