Geometrical factors determining dendritic domain intersection between neurons: a modeling study

Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM Trans Math Softw 22(4):469–483. https://doi.org/10.1145/235815.235821

Article  Google Scholar 

Beier KT, Steinberg EE, Deloach KE, Xie S, Miyamichi K, Schwarz L, Gao XJ, Kremer EJ, Malenka RC, Luo L (2015) Circuit architecture of VTA dopamine neurons revealed by systematic Input-Output mapping. Cell 162(3):622–634. https://doi.org/10.1016/j.cell.2015.07.015

Article  PubMed  PubMed Central  CAS  Google Scholar 

Berke JD (2018) What does dopamine mean? Nat Neurosci 21(6):787–793. https://doi.org/10.1038/s41593-018-0152-y

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bird AD, Cuntz H (2019) Dissecting Sholl analysis into its functional components. Cell Rep 27(10):3081–3096e5. https://doi.org/10.1016/j.celrep.2019.04.097

Article  PubMed  CAS  Google Scholar 

Bird AD, Deters LH, Cuntz H (2021) Excess neuronal branching allows for local innervation of specific dendritic compartments in mature cortex. Cereb Cortex 31(2):1008–1031. https://doi.org/10.1093/cercor/bhaa271

Article  PubMed  CAS  Google Scholar 

Bolam JP, Francis CM, Henderson Z (1991) Cholinergic input to dopaminergic neurons in the substantia nigra: A double immunocytochemical study. Neuroscience 41(2–3):483–494. https://doi.org/10.1016/0306-4522(91)90343-M

Article  PubMed  CAS  Google Scholar 

Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity. Cortex: statistics and geometry of neuronal connectivity. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03733-1

Chapter  Google Scholar 

Brignani S, Pasterkamp RJ (2017) Neuronal subset-specific migration and axonal wiring mechanisms in the developing midbrain dopamine system. Front Neuroanat 11:279063. https://doi.org/10.3389/FNANA.2017.00055/BIBTEX

Article  Google Scholar 

Brombas A, Kalita-De Croft S, Cooper-Williams EJ, Williams SR (2017) Dendro-dendritic cholinergic excitation controls dendritic Spike initiation in retinal ganglion cells. Nat Commun 8:1–14. https://doi.org/10.1038/ncomms15683

Article  CAS  Google Scholar 

Chazelle B, Dobkin DP (1987) Intersection of convex objects in two and three dimensions. J ACM (JACM) 34(1):1–27. https://doi.org/10.1145/7531.24036

Article  Google Scholar 

Chklovskii DB (2004) Exact solution for the optimal neuronal layout problem. Neural Comput 16(10):2067–2078. https://doi.org/10.1162/0899766041732422

Article  PubMed  Google Scholar 

Comoli E, Coizet V, Boyes J, Bolam JP, Canteras NS, Quirk RH, Overton PG, Redgrave P (2003) A direct projection from superior colliculus to substantia Nigra for detecting salient visual events. Nat Neurosci 6(9):974–980. https://doi.org/10.1038/nn1113

Article  PubMed  CAS  Google Scholar 

Cragg SJ, Nicholson C, Kume-Kick J, Tao L, Rice ME (2001) Dopamine-mediated volume transmission in midbrain is regulated by distinct extracellular geometry and uptake. J Neurophysiol 85(4):1761–1771. https://doi.org/10.1152/JN.2001.85.4.1761

Article  PubMed  CAS  Google Scholar 

Cuntz H (2012) The dendritic density field of a cortical pyramidal cell. Front Neuroanat 6–2012. https://doi.org/10.3389/fnana.2012.00002

Cuntz H, Forstner F, Borst A, Häusser M (2010) One rule to grow them all: A general theory of neuronal branching and its practical application. PLoS Comput Biol 6(8). https://doi.org/10.1371/journal.pcbi.1000877

D’Errico J (2021) Inhull. https://www.mathworks.com/matlabcentral/fileexchange/10226-inhull

Dacey DM, Petersen MR (1992) Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proc Natl Acad Sci USA 89(20):9666–9670. https://doi.org/10.1073/pnas.89.20.9666

Article  PubMed  PubMed Central  CAS  Google Scholar 

Farajian R, Raven MA, Cusato K, Reese BE (2004) Cellular positioning and dendritic field size of cholinergic Amacrine cells are impervious to early ablation of neighboring cells in the mouse retina. Vis Neurosci 21(1):13–22. https://doi.org/10.1017/S0952523804041021

Article  PubMed  Google Scholar 

Farassat N, Costa KM, Stojanovic S, Albert S, Kovacheva L, Shin J, Egger R, Somayaji M, Duvarci S, Schneider G, Roeper J (2019) In vivo functional diversity of midbrain dopamine neurons within identified axonal projections. ELife 8. https://doi.org/10.7554/ELIFE.48408

Felix RA, Vonderschen K, Berrebi AS, Magnusson AK (2013) Development of on-off spiking in superior paraolivary nucleus neurons of the mouse. J Neurophysiol 109(11):2691–2704. https://doi.org/10.1152/jn.01041.2012

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fu YH, Yuan Y, Halliday G, Rusznák Z, Watson C, Paxinos G (2012) A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse. Brain Struct Function 217(2):591–612. https://doi.org/10.1007/s00429-011-0349-2

Article  Google Scholar 

Gärtner U, Alpár A, Reimann F, Seeger G, Heumann R, Arendt T (2004) Constitutive Ras activity induces hippocampal hypertrophy and remodeling of pyramidal neurons in SynRas mice. J Neurosci Res 77(5):630–641. https://doi.org/10.1002/jnr.20194

Article  PubMed  CAS  Google Scholar 

Gatica RI, Lazcano G, Henny P (2023) Dendrites crossing borders: quantifying the distribution of individual substantia Nigra dopaminergic neurons’ dendritic tree in Pars compacta and Pars reticulata. Neuromethods 193:65–80. https://doi.org/10.1007/978-1-0716-2799-0_3

Article  CAS  Google Scholar 

Geisler S, Zahm DS (2005) Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J Comp Neurol 490(3):270–294. https://doi.org/10.1002/cne.20668

Article  PubMed  Google Scholar 

Gerfen CR (1985) The neostriatal mosaic. I. compartmental organization of projections from the striatum to the substantia Nigra in the rat. J Comp Neurol 236(4):454–476. https://doi.org/10.1002/cne.902360404

Article  PubMed  CAS  Google Scholar 

Gertler TS, Chan CS, Surmeier DJ (2008) Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci 28(43):10814–10824. https://doi.org/10.1523/JNEUROSCI.2660-08.2008

Article  PubMed  PubMed Central  CAS  Google Scholar 

Govender N, Rajamani R, Wilke DN, Wu CY, Khinast J, Glasser BJ (2018) Effect of particle shape in grinding mills using a GPU based DEM code. Miner Eng 129:71–84. https://doi.org/10.1016/j.mineng.2018.09.019

Article  CAS  Google Scholar 

Grueber WB, Sagasti A (2010) Self-avoidance and tiling: mechanisms of dendrite and axon spacing. Cold Spring Harb Perspect Biol 2(9). https://doi.org/10.1101/cshperspect.a001750

Haber SN, Fudge JL, McFarland NR, York N (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20(6):2369–2382. https://doi.org/10.1523/JNEUROSCI.20-06-02369.2000

Article  PubMed  PubMed Central  CAS  Google Scholar 

Harris KM, Spacek J (2017) In: Stuart G, Spruston N, Häusser M (eds) Chapter 1: Dendrite structure; in dendrites, 3th edn. OUP Oxford

Harwin W (2024) loadawobj. https://www.mathworks.com/matlabcentral/fileexchange/10223-loadawobj

Haug H (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A Stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180(2):126–142. https://doi.org/10.1002/aja.1001800203

Article  PubMed  CAS  Google Scholar 

Henny P, Brown MTC, Northrop A, Faunes M, Ungless MA, Magill PJ, Bolam JP (2012) Structural correlates of heterogeneous in vivo activity of midbrain dopaminergic neurons. Nat Neurosci 15(4):613–619. https://doi.org/10.1038/nn.3048

Article  PubMed  PubMed Central  CAS  Google Scholar 

Herculano-Houzel S (2011) Not all brains are made the same: new views on brain scaling in evolution. Brain Behav Evol 78(1):22–36. https://doi.org/10.1159/000327318

Article  PubMed  Google Scholar 

Ito T (2020) Different coding strategy of sound information between GABAergic and glutamatergic neurons in the auditory midbrain. J Physiol 598(5):1039–1072. https://doi.org/10.1113/JP279296

Article  PubMed  CAS 

Comments (0)

No login
gif