Natural language processing for local, regional, and distant breast cancer relapse identification in pathology reports

Siegel RL, Giaquinto AN, Jemal A (2024) Cancer statistics, 2024. CA Cancer J Clin 74:12–49. https://doi.org/10.3322/caac.21820

Article  PubMed  Google Scholar 

Giaquinto AN, Sung H, Miller KD et al (2022) Breast cancer statistics, 2022. CA Cancer J Clin 72:524–541. https://doi.org/10.3322/caac.21754

Article  PubMed  Google Scholar 

Pedersen RN, Esen BÖ, Mellemkjær L et al (2022) The incidence of breast cancer recurrence 10–32 years after primary diagnosis. J Natl Cancer Inst 114:391–399. https://doi.org/10.1093/jnci/djab202

Article  CAS  PubMed  Google Scholar 

Riggio AI, Varley KE, Welm AL (2021) The lingering mysteries of metastatic recurrence in breast cancer. Br J Cancer 124:13–26. https://doi.org/10.1038/s41416-020-01161-4

Article  PubMed  Google Scholar 

Kamata A, Hino K, Kamiyama K, Takasaka Y (2022) Very late recurrence in breast cancer: is breast cancer a chronic disease? Cureus 14:e22804. https://doi.org/10.7759/cureus.22804

Article  PubMed  PubMed Central  Google Scholar 

Chubak J, Yu O, Pocobelli G et al (2012) Administrative data algorithms to identify second breast cancer events following early-stage invasive breast cancer. J Natl Cancer Inst 104:931–940. https://doi.org/10.1093/jnci/djs233

Article  PubMed  PubMed Central  Google Scholar 

Xu Y, Kong S, Cheung WY et al (2019) Development and validation of case-finding algorithms for recurrence of breast cancer using routinely collected administrative data. BMC Cancer 19:210. https://doi.org/10.1186/s12885-019-5432-8

Article  PubMed  PubMed Central  Google Scholar 

Ritzwoller DP, Hassett MJ, Uno H et al (2018) Development, validation, and dissemination of a breast cancer recurrence detection and timing informatics algorithm. J Natl Cancer Inst 110:273–281. https://doi.org/10.1093/jnci/djx200

Article  PubMed  Google Scholar 

In H, Simon CA, Phillips JL et al (2015) The quest for population-level cancer recurrence data; current deficiencies and targets for improvement. J Surg Oncol 111:657–662. https://doi.org/10.1002/jso.23883

Article  PubMed  Google Scholar 

Kong H-J (2019) Managing unstructured big data in healthcare system. Healthc Inform Res 25:1–2. https://doi.org/10.4258/hir.2019.25.1.1

Article  PubMed  PubMed Central  Google Scholar 

Khurana D, Koli A, Khatter K, Singh S (2022) Natural language processing: state of the art, current trends and challenges. Multimed Tools Appl 82:3713–3744. https://doi.org/10.1007/s11042-022-13428-4

Article  PubMed  PubMed Central  Google Scholar 

Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In: Burstein J, Doran C, Solorio T (eds). Association for Computational Linguistics, pp 4171–4186

Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving Language Understanding by Generative Pre-Training. OpenAI. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Vaswani A, Shazeer N, Parmar N, et al (2023) Attention Is All You Need. arXiv. https://arxiv.org/abs/1706.03762

Raffel C, Shazeer N, Roberts A, et al (2020) Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv. https://arxiv.org/abs/1910.10683

Gururangan S, Marasović A, Swayamdipta S, et al (2020) Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks. arXiv. https://arxiv.org/abs/2004.10964

Peng Y, Yan S, Lu Z (2019) Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets. arXiv. https://arxiv.org/abs/1906.05474s

Hossain E, Rana R, Higgins N et al (2023) Natural language processing in electronic health records in relation to healthcare decision-making: a systematic review. Comput Biol Med 155:106649. https://doi.org/10.1016/j.compbiomed.2023.106649

Article  PubMed  Google Scholar 

Koleck TA, Dreisbach C, Bourne PE, Bakken S (2019) Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. J Am Med Inform Assoc JAMIA 26:364. https://doi.org/10.1093/jamia/ocy173

Article  PubMed  Google Scholar 

Lee RY, Kross EK, Torrence J et al (2023) Assessment of natural language processing of electronic health records to measure goals-of-care discussions as a clinical trial outcome. JAMA Netw Open 6:e231204. https://doi.org/10.1001/jamanetworkopen.2023.1204

Article  PubMed  PubMed Central  Google Scholar 

Sangariyavanich E, Ponthongmak W, Tansawet A et al (2023) Systematic review of natural language processing for recurrent cancer detection from electronic medical records. Inform Med Unlocked 41:101326. https://doi.org/10.1016/j.imu.2023.101326

Article  Google Scholar 

Banerjee I, Bozkurt S, Caswell-Jin JL et al (2019) Natural language processing approaches to detect the timeline of metastatic recurrence of breast cancer. JCO Clin Cancer Inform. https://doi.org/10.1200/CCI.19.00034

Article  PubMed  Google Scholar 

Carrell DS, Halgrim S, Tran D-T et al (2014) Using natural language processing to improve efficiency of manual chart abstraction in research: the case of breast cancer recurrence. Am J Epidemiol 179:749–758. https://doi.org/10.1093/aje/kwt441

Article  PubMed  PubMed Central  Google Scholar 

Zeng Z, Espino S, Roy A et al (2018) Using natural language processing and machine learning to identify breast cancer local recurrence. BMC Bioinformatics 19:498. https://doi.org/10.1186/s12859-018-2466-x

Article  PubMed  PubMed Central  Google Scholar 

Ling AY, Kurian AW, Caswell-Jin JL et al (2019) Using natural language processing to construct a metastatic breast cancer cohort from linked cancer registry and electronic medical records data. JAMIA Open 2:528–537. https://doi.org/10.1093/jamiaopen/ooz040

Article  PubMed  PubMed Central  Google Scholar 

Zeng Z, Yao L, Roy A et al (2019) Identifying breast cancer distant recurrences from electronic health records using machine learning. J Healthc Inform Res 3:283–299. https://doi.org/10.1007/s41666-019-00046-3

Article  PubMed  PubMed Central  Google Scholar 

Horan J, Reid C, Boland MR et al (2023) Assessing mode of recurrence in breast cancer to identify an optimised follow-up pathway: 10-year institutional review. Ann Surg Oncol 30:6117–6124. https://doi.org/10.1245/s10434-023-13885-7

Article  PubMed  PubMed Central  Google Scholar 

Aladag Kurt S, Kayadibi Y, Bas A et al (2023) Comparing the efficiency of imaging modalities in detection of recurrent breast cancer. Eur J Breast Health 19:85–91. https://doi.org/10.4274/ejbh.galenos.2022.2022-10-1

Article  PubMed  PubMed Central  Google Scholar 

Schlaiss T, Bott L, Herbert S-L et al (2024) Imaging for local recurrence of breast cancer. J Cancer Res Clin Oncol 150:200. https://doi.org/10.1007/s00432-024-05709-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leong AS-Y, Zhuang Z (2011) The changing role of pathology in breast cancer diagnosis and treatment. Pathobiology 78:99–114. https://doi.org/10.1159/000292644

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cserni G, Francz M, Járay B et al (2022) Pathological diagnosis, work-up and reporting of breast cancer 1st Central-Eastern European professional consensus statement on breast cancer. Pathol Oncol Res 28:1610373. https://doi.org/10.3389/pore.2022.1610373

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bruening W, Fontanarosa J, Tipton K et al (2010) Systematic review: comparative effectiveness of core-needle and open surgical biopsy to diagnose breast lesions. Ann Intern Med 152:238–246. https://doi.org/10.7326/0003-4819-152-1-201001050-00190

Article  PubMed  Google Scholar 

Lee JJ, Zepeda A, Arbour G et al (2024) Automated identification of breast cancer relapse in computed tomography reports using natural language processing. JCO Clin Cancer Inform. https://doi.org/10.1200/CCI.24.00107

Article  PubMed  PubMed Central  Google Scholar 

Bick U, Helbich TH (2019) Follow-up of patients with breast cancer: imaging of local recurrence and distant metastases. In: Hodler J, Kubik-Huch RA, von Schulthess GK (eds) Diseases of the chest, breast, heart and vessels 2019–2022: Diagnostic and interventional imaging. Springer, Cham, p 167

Chapter 

Comments (0)

No login
gif