Identification of genetically-supported new drug targets for osteomyelitis based on druggable genomes

Desimpel J, Posadzy M, Vanhoenacker F. The many faces of osteomyelitis: a pictorial review. J Belg Soc Radiol. 2017;101(1):24. https://doi.org/10.5334/jbr-btr.1300.

Article  PubMed  PubMed Central  Google Scholar 

Bury DC, Rogers TS, Dickman MM. Osteomyelitis: diagnosis and treatment. Am Fam Physician. 2021;104(4):395–402.

PubMed  Google Scholar 

Wassif RK, Elkayal M, Shamma RN, Elkheshen SA. Recent advances in the local antibiotics delivery systems for management of osteomyelitis. Drug Deliv. 2021;28(1):2392–414. https://doi.org/10.1080/10717544.2021.1998246.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hofstee MI, Muthukrishnan G, Atkins GJ, Riool M, Thompson K, Morgenstern M, et al. Current Concepts of Osteomyelitis: From Pathologic Mechanisms to Advanced Research Methods. Am J Pathol. 2020;190(6):1151–63. https://doi.org/10.1016/j.ajpath.2020.02.007.

Article  CAS  PubMed  Google Scholar 

Hedrich CM, Morbach H, Reiser C, Girschick HJ. New insights into adult and paediatric chronic non-bacterial osteomyelitis CNO. Curr Rheumatol Rep. 2020;22(9):52. https://doi.org/10.1007/s11926-020-00928-1.

Article  PubMed  PubMed Central  Google Scholar 

Krauss JL, Roper PM, Ballard A, Shih CC, Fitzpatrick JAJ, Cassat JE, et al. Staphylococcus aureus infects osteoclasts and replicates intracellularly. MBio. 2019. https://doi.org/10.1128/mBio.02447-19.

Article  PubMed  PubMed Central  Google Scholar 

Urish KL, Cassat JE. Staphylococcus aureus osteomyelitis: bone, bugs, and surgery. Infect Immun. 2020. https://doi.org/10.1128/iai.00932-19.

Article  PubMed  PubMed Central  Google Scholar 

Lima AL, Oliveira PR, Carvalho VC, Cimerman S, Savio E. Recommendations for the treatment of osteomyelitis. Braz J Infect Dis. 2014;18(5):526–34. https://doi.org/10.1016/j.bjid.2013.12.005.

Article  PubMed  PubMed Central  Google Scholar 

Kavanagh N, Ryan EJ, Widaa A, Sexton G, Fennell J, O’Rourke S, et al. Staphylococcal osteomyelitis: disease progression, treatment challenges, and future directions. Clin Microbiol Rev. 2018. https://doi.org/10.1128/cmr.00084-17.

Article  PubMed  PubMed Central  Google Scholar 

Zapata D, Higgs J, Wittholt H, Chittimalli K, Brooks AE, Mulinti P. Nanotechnology in the diagnosis and treatment of osteomyelitis. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14081563.

Article  PubMed  PubMed Central  Google Scholar 

Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, et al. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47(8):856–60. https://doi.org/10.1038/ng.3314.

Article  CAS  PubMed  Google Scholar 

King EA, Davis JW, Degner JF. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 2019;15(12):e1008489. https://doi.org/10.1371/journal.pgen.1008489.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hingorani AD, Kuan V, Finan C, Kruger FA, Gaulton A, Chopade S, et al. Improving the odds of drug development success through human genomics: modelling study. Sci Rep. 2019;9(1):18911. https://doi.org/10.1038/s41598-019-54849-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T, Engmann J, et al. The druggable genome and support for target identification and validation in drug development. Sci Transl Med. 2017. https://doi.org/10.1126/scitranslmed.aag1166.

Article  PubMed  PubMed Central  Google Scholar 

Schmidt AF, Finan C, Gordillo-Marañón M, Asselbergs FW, Freitag DF, Patel RS, et al. Genetic drug target validation using Mendelian randomisation. Nat Commun. 2020;11(1):3255. https://doi.org/10.1038/s41467-020-16969-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang N, Zhong YC, Lin QR, Song CS, Yu B, Hu YJ. Solute carrier family 11 member 1 genetic polymorphisms rs17235409 and rs3731865 associate with susceptibility to extremity post-traumatic osteomyelitis in a Chinese Han population. Int J Immunogenet. 2023;50(3):127–33. https://doi.org/10.1111/iji.12620.

Article  CAS  PubMed  Google Scholar 

Song CS, Zhang P, Lin QR, Hu YY, Pan CQ, Jiang N, et al. Nitric oxide synthase 2 genetic variation rs2297514 associates with a decreased susceptibility to extremity post-traumatic osteomyelitis in a Chinese Han population. Front Cell Infect Microbiol. 2023;13:1177830. https://doi.org/10.3389/fcimb.2023.1177830.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89-98. https://doi.org/10.1093/hmg/ddu328.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith GD, Ebrahim S. “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22. https://doi.org/10.1093/ije/dyg070.

Article  PubMed  Google Scholar 

Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48(5):481–7. https://doi.org/10.1038/ng.3538.

Article  CAS  PubMed  Google Scholar 

Storm CS, Kia DA, Almramhi MM, Bandres-Ciga S, Finan C, Hingorani AD, et al. Finding genetically-supported drug targets for Parkinson’s disease using Mendelian randomization of the druggable genome. Nat Commun. 2021;12(1):7342. https://doi.org/10.1038/s41467-021-26280-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR statement. JAMA. 2021;326(16):1614–21. https://doi.org/10.1001/jama.2021.18236.

Article  PubMed  Google Scholar 

Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-egger method. Eur J Epidemiol. 2017;32(5):377–89. https://doi.org/10.1007/s10654-017-0255-x.

Article  PubMed  PubMed Central  Google Scholar 

Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5):e1004383. https://doi.org/10.1371/journal.pgen.1004383.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Võsa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, Zeng B, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet. 2021;53(9):1300–10. https://doi.org/10.1038/s41588-021-00913-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI, Styrmisdottir EL, et al. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet. 2021;53(12):1712–21. https://doi.org/10.1038/s41588-021-00978-w.

Article  CAS  PubMed  Google Scholar 

Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, et al. TTD: therapeutic target database describing target druggability information. Nucleic Acids Res. 2024;52(D1):D1465–77. https://doi.org/10.1093/nar/gkad751.

Article  PubMed 

Comments (0)

No login
gif