MiR-148a-3p regulates the fracture healing process by targeting MAFB

Jang HD, Kim EH, Lee JC, Choi SW, Kim HS, Cha JS, et al. Management of osteoporotic vertebral fracture: review update 2022. Asian Spine J. 2022;16(6):934–46.

Article  PubMed  PubMed Central  Google Scholar 

Al-Sari UA, Tobias J, Clark E. Health-related quality of life in older people with osteoporotic vertebral fractures: a systematic review and meta-analysis. osteoporosis international: a journal established as result of Cooperation between the European foundation for osteoporosis and the National osteoporosis foundation of the USA. 2016;27(10):2891–900.

Ma X, Xia H, Wang J, Zhu X, Huang F, Lu L, et al. Re-fracture and correlated risk factors in patients with osteoporotic vertebral fractures. J Bone Miner Metab. 2019;37(4):722–8.

Article  CAS  PubMed  Google Scholar 

Ahn Y, Lee SH. Vertebroplasty for adjacent vertebral fracture following lumbar interbody fusion. Br J Neurosurg. 2011;25(1):104–8.

Article  PubMed  Google Scholar 

Buchbinder R, Johnston RV, Rischin KJ, Homik J, Jones CA, Golmohammadi K, et al. Percutaneous vertebroplasty for osteoporotic vertebral compression fracture. Cochrane Database Syst Rev. 2018;11(11):Cd006349.

PubMed  Google Scholar 

Mick P, Fischer C. Delayed fracture healing. Semin Musculoskelet Radiol. 2022;26(3):329–37.

Article  PubMed  Google Scholar 

Li Y, Sun Y, Ma K, Wang S, Wang Z, Huang L. Functional mechanism and clinical implications of LINC00339 in delayed fracture healing. J Orthop Surg Res. 2024;19(1):511.

Article  PubMed  PubMed Central  Google Scholar 

Liu J, Liu TT, Zhang HC, Li C, Wei W, Chao AJ. Effects of Jintiange on the healing of osteoporotic fractures in aged rats. J Orthop Surg Res. 2024;19(1):828.

Article  PubMed  PubMed Central  Google Scholar 

Foulke BA, Kendal AR, Murray DW, Pandit H. Fracture healing in the elderly: A review. Maturitas. 2016;92:49–55.

Article  PubMed  Google Scholar 

Migliorini F, Cocconi F, Vecchio G, Schäefer L, Koettnitz J, Maffulli N. Pharmacological agents for bone fracture healing: talking points from recent clinical trials. Expert Opin Investig Drugs. 2023;32(9):855–65.

Article  CAS  PubMed  Google Scholar 

Khanna A, Gougoulias N, Maffulli N. Intermittent pneumatic compression in fracture and soft-tissue injuries healing. Br Med Bull. 2008;88(1):147–56.

Article  PubMed  Google Scholar 

Aoyagi T, Matsui T. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Curr Pharm Design. 2011;17(18):1818–24.

Article  CAS  Google Scholar 

Yao J, Xin R, Zhao C, Yu C. MicroRNAs in osteoblast differentiation and fracture healing: from pathogenesis to therapeutic implication. Injury. 2024;55(4):111410.

Article  PubMed  Google Scholar 

Giordano L, Porta GD, Peretti GM, Maffulli N. Therapeutic potential of MicroRNA in tendon injuries. Br Med Bull. 2020;133(1):79–94.

Article  CAS  PubMed  Google Scholar 

Oliviero A, Della Porta G, Peretti GM, Maffulli N. MicroRNA in osteoarthritis: physiopathology, diagnosis and therapeutic challenge. Br Med Bull. 2019;130(1):137–47.

Article  CAS  PubMed  Google Scholar 

Iaquinta MR, Lanzillotti C, Mazziotta C, Bononi I, Frontini F, Mazzoni E, et al. The role of MicroRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics. 2021;11(13):6573–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Y, Qiao H, Liu L, Dong P, Zhu F, Zhang J, et al. miR-21 regulates osteogenic and adipogenic differentiation of BMSCs by targeting PTEN. J Musculoskel Neuronal Interact. 2021;21(4):568–76.

CAS  Google Scholar 

Peng H, Lu SL, Bai Y, Fang X, Huang H, Zhuang XQ. MiR-133a inhibits fracture healing via targeting RUNX2/BMP2. Eur Rev Med Pharmacol Sci. 2018;22(9):2519–26.

CAS  PubMed  Google Scholar 

Kelch S, Balmayor ER, Seeliger C, Vester H, Kirschke JS, van Griensven M. MiRNAs in bone tissue correlate to bone mineral density and Circulating MiRNAs are gender independent in osteoporotic patients. Sci Rep. 2017;7(1):15861.

Article  PubMed  PubMed Central  Google Scholar 

Lincoln S, Morse LR, Troy K, Mattson N, Nguyen N, Battaglino RA. MicroRNA-148a-3p is a candidate mediator of increased bone marrow adiposity and bone loss following spinal cord injury. Front Endocrinol. 2022;13:910934.

Article  Google Scholar 

Zhuang H, Li Y, Lin J, Yao X, Xie Y, Wang P, et al. A Single-Center prospective study of 116 women with osteoporosis treated with Zoledronic acid monitored by electrocardiography for the development of cardiac arrhythmia during the acute phase in China. Med Sci Monitor: Int Med J Experimental Clin Res. 2021;27:e928637.

Article  CAS  Google Scholar 

Zhang N, Zhang RF, Zhang AN, Dong GX, Suo N, Wu ZP, et al. MiR-204 promotes fracture healing via enhancing cell viability of osteoblasts. Eur Rev Med Pharmacol Sci. 2018;22(1 Suppl):29–35.

CAS  PubMed  Google Scholar 

Wang F, Hu XY, Cao C, Zhao YW, He SH. MiR-488 promotes fracture healing by targeting DKK1. European review for medical and Pharmacological sciences. 2018;22(24):8965–72.

Zheng ZZ, Xu JH, Dai Y, Jiang B, Tu ZM, Li L, et al. Circulating miR-107 as a diagnostic biomarker of osteoporotic vertebral compression fracture increases bone formation in vitro and in vivo. Life Sci. 2023;323:121693.

Article  CAS  PubMed  Google Scholar 

Sun M, Hu L, Wang S, Huang T, Zhang M, Yang M, et al. Circulating MicroRNA-19b identified from osteoporotic vertebral compression fracture patients increases bone formation. J Bone Mineral Research: Official J Am Soc Bone Mineral Res. 2020;35(2):306–16.

Article  CAS  Google Scholar 

Xiang J, Huang L, Qu C, Bao W, Wang W, Zhu X, et al. Serum miR-519d-3p and BMP2: potential early diagnostic markers and their mechanism in delayed fracture healing. J Orthop Surg Res. 2025;20(1):302.

Article  PubMed  PubMed Central  Google Scholar 

Ma H, Li M, Jia Z, Chen X, Bu N. MicroRNA-455-3p promotes osteoblast differentiation via targeting HDAC2. Injury. 2022;53(11):3636–41.

Article  PubMed  Google Scholar 

Li X, Li K, Yu G, Yu C, Liu C. miR-342-5p inhibits expression of Bmp7 to regulate proliferation, differentiation and migration of osteoblasts. Mol Immunol. 2019;114:251–9.

Article  CAS  PubMed  Google Scholar 

Zhang YB, Guo XQ, Wang GG, Pu HB. MicroRNA 98-5p overexpression contributes to delayed fracture healing via targeting BMP-2. Tohoku J Exp Med. 2024;263(1):17–25.

Article  CAS  PubMed  Google Scholar 

Nishikawa K, Nakashima T, Takeda S, Isogai M, Hamada M, Kimura A, et al. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J Clin Investig. 2010;120(10):3455–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mumm S, Huskey M, Duan S, Wenkert D, Madson KL, Gottesman GS, et al. Multicentric carpotarsal osteolysis syndrome is caused by only a few domain-specific mutations in MAFB, a negative regulator of RANKL-induced osteoclastogenesis. Am J Med Genet Part A. 2014;164a(9):2287–93.

Article  PubMed  Google Scholar 

Ramírez-Salazar EG, Almeraya EV, López-Perez TV, Patiño N, Salmeron J, Velázquez-Cruz R. MicroRNA-548-3p overexpression inhibits proliferation, migration and invasion in osteoblast-like cells by targeting STAT1 and MAFB. J BioChem. 2020;168(3):203–11.

Article  PubMed  Google Scholar 

Zhang Z, Wang L, Zhang F, Jing S, Cen M. Functional mechanism and clinical implications of mir-1271-5p in Pilon fracture healing processes. J Orthop Surg Res. 2024;19(1):782.

Article  PubMed  PubMed Central  Google Scholar 

Wu X, Shen T, Ji W, Huang M, Sima J, Li J, et al. LncRNA CASC11 regulates the progress of delayed fracture healing via sponging miR-150-3p. J Orthop Surg Res. 2024;19(1):757.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif