Jang HD, Kim EH, Lee JC, Choi SW, Kim HS, Cha JS, et al. Management of osteoporotic vertebral fracture: review update 2022. Asian Spine J. 2022;16(6):934–46.
Article PubMed PubMed Central Google Scholar
Al-Sari UA, Tobias J, Clark E. Health-related quality of life in older people with osteoporotic vertebral fractures: a systematic review and meta-analysis. osteoporosis international: a journal established as result of Cooperation between the European foundation for osteoporosis and the National osteoporosis foundation of the USA. 2016;27(10):2891–900.
Ma X, Xia H, Wang J, Zhu X, Huang F, Lu L, et al. Re-fracture and correlated risk factors in patients with osteoporotic vertebral fractures. J Bone Miner Metab. 2019;37(4):722–8.
Article CAS PubMed Google Scholar
Ahn Y, Lee SH. Vertebroplasty for adjacent vertebral fracture following lumbar interbody fusion. Br J Neurosurg. 2011;25(1):104–8.
Buchbinder R, Johnston RV, Rischin KJ, Homik J, Jones CA, Golmohammadi K, et al. Percutaneous vertebroplasty for osteoporotic vertebral compression fracture. Cochrane Database Syst Rev. 2018;11(11):Cd006349.
Mick P, Fischer C. Delayed fracture healing. Semin Musculoskelet Radiol. 2022;26(3):329–37.
Li Y, Sun Y, Ma K, Wang S, Wang Z, Huang L. Functional mechanism and clinical implications of LINC00339 in delayed fracture healing. J Orthop Surg Res. 2024;19(1):511.
Article PubMed PubMed Central Google Scholar
Liu J, Liu TT, Zhang HC, Li C, Wei W, Chao AJ. Effects of Jintiange on the healing of osteoporotic fractures in aged rats. J Orthop Surg Res. 2024;19(1):828.
Article PubMed PubMed Central Google Scholar
Foulke BA, Kendal AR, Murray DW, Pandit H. Fracture healing in the elderly: A review. Maturitas. 2016;92:49–55.
Migliorini F, Cocconi F, Vecchio G, Schäefer L, Koettnitz J, Maffulli N. Pharmacological agents for bone fracture healing: talking points from recent clinical trials. Expert Opin Investig Drugs. 2023;32(9):855–65.
Article CAS PubMed Google Scholar
Khanna A, Gougoulias N, Maffulli N. Intermittent pneumatic compression in fracture and soft-tissue injuries healing. Br Med Bull. 2008;88(1):147–56.
Aoyagi T, Matsui T. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Curr Pharm Design. 2011;17(18):1818–24.
Yao J, Xin R, Zhao C, Yu C. MicroRNAs in osteoblast differentiation and fracture healing: from pathogenesis to therapeutic implication. Injury. 2024;55(4):111410.
Giordano L, Porta GD, Peretti GM, Maffulli N. Therapeutic potential of MicroRNA in tendon injuries. Br Med Bull. 2020;133(1):79–94.
Article CAS PubMed Google Scholar
Oliviero A, Della Porta G, Peretti GM, Maffulli N. MicroRNA in osteoarthritis: physiopathology, diagnosis and therapeutic challenge. Br Med Bull. 2019;130(1):137–47.
Article CAS PubMed Google Scholar
Iaquinta MR, Lanzillotti C, Mazziotta C, Bononi I, Frontini F, Mazzoni E, et al. The role of MicroRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics. 2021;11(13):6573–91.
Article CAS PubMed PubMed Central Google Scholar
Zhou Y, Qiao H, Liu L, Dong P, Zhu F, Zhang J, et al. miR-21 regulates osteogenic and adipogenic differentiation of BMSCs by targeting PTEN. J Musculoskel Neuronal Interact. 2021;21(4):568–76.
Peng H, Lu SL, Bai Y, Fang X, Huang H, Zhuang XQ. MiR-133a inhibits fracture healing via targeting RUNX2/BMP2. Eur Rev Med Pharmacol Sci. 2018;22(9):2519–26.
Kelch S, Balmayor ER, Seeliger C, Vester H, Kirschke JS, van Griensven M. MiRNAs in bone tissue correlate to bone mineral density and Circulating MiRNAs are gender independent in osteoporotic patients. Sci Rep. 2017;7(1):15861.
Article PubMed PubMed Central Google Scholar
Lincoln S, Morse LR, Troy K, Mattson N, Nguyen N, Battaglino RA. MicroRNA-148a-3p is a candidate mediator of increased bone marrow adiposity and bone loss following spinal cord injury. Front Endocrinol. 2022;13:910934.
Zhuang H, Li Y, Lin J, Yao X, Xie Y, Wang P, et al. A Single-Center prospective study of 116 women with osteoporosis treated with Zoledronic acid monitored by electrocardiography for the development of cardiac arrhythmia during the acute phase in China. Med Sci Monitor: Int Med J Experimental Clin Res. 2021;27:e928637.
Zhang N, Zhang RF, Zhang AN, Dong GX, Suo N, Wu ZP, et al. MiR-204 promotes fracture healing via enhancing cell viability of osteoblasts. Eur Rev Med Pharmacol Sci. 2018;22(1 Suppl):29–35.
Wang F, Hu XY, Cao C, Zhao YW, He SH. MiR-488 promotes fracture healing by targeting DKK1. European review for medical and Pharmacological sciences. 2018;22(24):8965–72.
Zheng ZZ, Xu JH, Dai Y, Jiang B, Tu ZM, Li L, et al. Circulating miR-107 as a diagnostic biomarker of osteoporotic vertebral compression fracture increases bone formation in vitro and in vivo. Life Sci. 2023;323:121693.
Article CAS PubMed Google Scholar
Sun M, Hu L, Wang S, Huang T, Zhang M, Yang M, et al. Circulating MicroRNA-19b identified from osteoporotic vertebral compression fracture patients increases bone formation. J Bone Mineral Research: Official J Am Soc Bone Mineral Res. 2020;35(2):306–16.
Xiang J, Huang L, Qu C, Bao W, Wang W, Zhu X, et al. Serum miR-519d-3p and BMP2: potential early diagnostic markers and their mechanism in delayed fracture healing. J Orthop Surg Res. 2025;20(1):302.
Article PubMed PubMed Central Google Scholar
Ma H, Li M, Jia Z, Chen X, Bu N. MicroRNA-455-3p promotes osteoblast differentiation via targeting HDAC2. Injury. 2022;53(11):3636–41.
Li X, Li K, Yu G, Yu C, Liu C. miR-342-5p inhibits expression of Bmp7 to regulate proliferation, differentiation and migration of osteoblasts. Mol Immunol. 2019;114:251–9.
Article CAS PubMed Google Scholar
Zhang YB, Guo XQ, Wang GG, Pu HB. MicroRNA 98-5p overexpression contributes to delayed fracture healing via targeting BMP-2. Tohoku J Exp Med. 2024;263(1):17–25.
Article CAS PubMed Google Scholar
Nishikawa K, Nakashima T, Takeda S, Isogai M, Hamada M, Kimura A, et al. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J Clin Investig. 2010;120(10):3455–65.
Article CAS PubMed PubMed Central Google Scholar
Mumm S, Huskey M, Duan S, Wenkert D, Madson KL, Gottesman GS, et al. Multicentric carpotarsal osteolysis syndrome is caused by only a few domain-specific mutations in MAFB, a negative regulator of RANKL-induced osteoclastogenesis. Am J Med Genet Part A. 2014;164a(9):2287–93.
Ramírez-Salazar EG, Almeraya EV, López-Perez TV, Patiño N, Salmeron J, Velázquez-Cruz R. MicroRNA-548-3p overexpression inhibits proliferation, migration and invasion in osteoblast-like cells by targeting STAT1 and MAFB. J BioChem. 2020;168(3):203–11.
Zhang Z, Wang L, Zhang F, Jing S, Cen M. Functional mechanism and clinical implications of mir-1271-5p in Pilon fracture healing processes. J Orthop Surg Res. 2024;19(1):782.
Article PubMed PubMed Central Google Scholar
Wu X, Shen T, Ji W, Huang M, Sima J, Li J, et al. LncRNA CASC11 regulates the progress of delayed fracture healing via sponging miR-150-3p. J Orthop Surg Res. 2024;19(1):757.
Comments (0)