MATLAB simulation for optimization of Erbium-Doped fiber amplifier

A. Guesmi et al., Numerical analysis and optimization of high power single frequency co-doped erbium–ytterbium fiber amplifier. Opt. Fiber. Technol. (2024). https://doi.org/10.1016/j.yofte.2024.104120

Article  Google Scholar 

R. Regaieg et al., Optimizing Few-Mode Erbium-Doped fiber amplifiers for high-capacity optical networks using a multi-objective optimization algorithm. Opt. Fiber. Technol. (2025). https://doi.org/10.1016/j.yofte.2025.104186

Article  Google Scholar 

L.K. Rumbaugh et al., Open-source fiber laser and amplifier design toolbox using custom FDTD simulation engine, SPIE Proc. https://doi.org/10.1117/12.2051155

Fiber Lasers and Amplifiers Design Toolbox, MATLAB Cent. File Exch., https://www.mathworks.com/matlabcentral/fileexchange/42122-fiber-lasers-and-amplifiers-design-toolbox

X. Bai et al., Yb-ASE suppression in Single-Frequency hybrid double cladding Erbium–Ytterbium Co-Doped fiber amplifier with SMS structure applied sciences (2021) https://doi.org/10.3390/app11199334

Simranjit Singh1*, Sonak Saini1, Gurpreet Kaur1, and Rajinder Singh Kaler2 on the optimization of Raman fiber amplifier using genetic algorithm in the scenario of a 64 Nm 320 channels dense wavelength division multiplexed system. J. Opt. Soc. Kore. (2014). https://doi.org/10.3807/JOSK.2014.18.2.118

Article  Google Scholar 

Dingchen, Wang, Li Pei Modeling optimization design and amplification characteristics of O-band irregular Bragg bismuth-doped fiber amplifier Results in Physics (2024) https://doi.org/10.1016/j.rinp.2024.107860

Lihong Wang Analyzing the gain, Phys. Technol. (2024). https://doi.org/10.1016/j.infrared.2024.105388. and noise characteristics of the Bi/Er co-doped fiber amplifier Infrared

Hafiz Muhammad Obaid Gain Flattened, S + C + L-band bidirectional thulium doped fiber/multi-section fiber optical parametric hybrid amplifier. Ain Shams Eng. J. (2024). https://doi.org/10.1016/j.asej.2023.102497

Article  Google Scholar 

Chunxu Wang Synthesis and study of novel erbium-, Doped La2O3-Al2O3 glasses for on-chip waveguide amplifier. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.162915

Article  Google Scholar 

Murat Yucel Classification of the temperature-, dependent gain of an erbium-doped fiber amplifier by using data mining methods Optik (2020) https://doi.org/10.1016/j.ijleo.2020.164515

Bernard Marie Tabi, Fouda development of a key technique for the optimization of Φ-OTDR-based distributed fiber-optic vibration signals filtering. Sens. Actuators A: Phys. (2025). https://doi.org/10.1016/j.sna.2025.116435

Article  Google Scholar 

Maciej Napiorkowski Optimization, Of Spatial mode separation in few-mode nanostructured fibers with generative inverse design networks engineering. Appl. Artif. Intell. (2024). https://doi.org/10.1016/j.engappai.2024.107955

Article  Google Scholar 

S. Abdullah, Karar genetic algorithm based single pulse energy optimization in Mamyshev oscillator optical fiber technology (2024) https://doi.org/10.1016/j.yofte.2024.103907

Hafiz Muhammad Obaid, Novel flat-gain L-band Raman/Er-Yb co-doped fiber hybrid optical amplifier for high capacity DWDM system Optik (2018) https://doi.org/10.1016/j.ijleo.2018.09.015

Maria Michalska Arbitrary pulse shaping in Er-doped fiber amplifiers—Possibilities and limitations Optics & Laser Technology, (2014) https://doi.org/10.1016/j.optlastec.2013.12.015

Hafiz Muhammad Obaid Numerical, achievement of high and flat gain using Er-Yb co-doped fiber/Raman hybrid optical amplifier Optik (2019) https://doi.org/10.1016/j.ijleo.2019.04.089

K.G. Tay Gain prediction of dual-pump fiber optic parametric amplifier based on artificial neural network Optik (2022) https://doi.org/10.1016/j.ijleo.2022.168579

C.B. Luís, Silva simulation solution for single and cascaded multi-wavelength Brillouin fiber lasers based on an analytical model optical Fiber Technology (2020) https://doi.org/10.1016/j.yofte.2020.102317

Zijuan Tang Sensitivity optimization of symmetric multi-core fiber strain sensor based on mode-coupling theory Infrared Physics & Technology, (2020) https://doi.org/10.1016/j.infrared.2020.103517

A. Yu Zhao, Neuro Metasurface Mode-Router for Fiber Mode Demultiplexing and Communications Engineering, (2025) https://doi.org/10.1016/j.eng.2024.11.012

Jing He Experimental research, of UWB over fiber system employing 128-QAM and ISFA-optimized scheme Optical Fiber Technology (2018) https://doi.org/10.1016/j.yofte.2018.03.002

Simranjit Singh Performance, Optics, Optimization of EDFA–Raman hybrid optical amplifier using genetic algorithm. Laser Technol. (2015). https://doi.org/10.1016/j.optlastec.2014.10.011

Article  Google Scholar 

Chandra Shekhar, Time-optimised real-time time–frequency measurement technique for RoFSO applications measurement (2025) https://doi.org/10.1016/j.measurement.2025.117698

Hossein Fatehi; Siamak Dawazdah Emami, Atiyeh zarifi; Fatemeh Zahra zahedi; Seyed Edriss mirnia; Arman Zarei analytical model for broadband Thulium-Bismuth-Doped fiber amplifier. IEE J. Quantum Electron. (2012). https://doi.org/10.1109/JQE.2012.2199739

Article  Google Scholar 

Muhammad, Ibadurrohman, ORCID logo *a Afaf Qurrotu ainin,a Fakhri Zinul alam,a Nadia mumtazah,a slamet,a Alfian Ferdiansyah madsuha,b Reza Miftahul ulumb and Bonavian Hasiholanc modification of hydrothermally synthesized α-Fe2O3 nanorods with g-C3N4 prepared from various precursors as photoanodes for hydrogen productio. New J. Chem. (2025). https://doi.org/10.1039/D5NJ00795J

Article  Google Scholar 

S. Akira, B. Christina, Olausson a,b, Hiroki Maruyama aJes Broeng high power ytterbium fiber lasers at extremely long Wavelengthsby photonic bandgap fiber technology optical Fiber Technology (2010) https://doi.org/10.1016/j.yofte.2010.09.003

J. Chun, Weisheng hu; Qingji Zeng improved gain performance of high concentration er/sup 3+/-Yb/sup 3+/-codoped phosphate fiber amplifier. IEE J. Quantum Electron. (38503) https://doi.org/10.1109/JQE.2005.845355

J. Kemtchou, M. Duhamel, P. Lecoy gain temperature dependence of erbium-doped silica and fluoride fiber amplifiers in multichannel wavelength-multiplexed transmission systems (1997) https://doi.org/10.1109/50.641526

Le Nguyen Binh Optical Fiber Communication Systems with MATLAB and Simulink Models Accessibility symbol Accessibility Information Book Optical Fiber Communication Systems with MATLAB and Simulink Models OPTICS EXPRESS (2014) https://doi.org/10.1201/b17781

Y. Mali Gong, C. Yuan, P. Li, Yan, Haitao Zhang, and Suying Liao Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers (2007) https://doi.org/10.1364/OE.15.003236

Y. Shu Namiki, Emori, Atsushi Oguri Chap. 4 - Discrete Raman Amplifiers Raman Amplification in Fiber Optical Communication Systems (2005) https://doi.org/10.1016/B978-012044506-6/50005-0

B. Pedersen, W.J. Miniscalco, Zemon evaluation of the 800 Nm pump band for erbium-doped fiber amplifiers. J. Lightwave Technol. (2002). https://doi.org/10.1109/50.156843

Article  Google Scholar 

Y. Zhu, K. Duan, H. Shao, B. Zhao, E. Zhang, Wei Zhao theoretical analysis of output performance of GG–IAG fiber laser by multipoint distributed side pump optical Fiber Technology (2012) https://doi.org/10.1016/j.optcom.2012.08.019

Comments (0)

No login
gif