Optical soliton solutions using the unified auxiliary equation method: propagation pulses in optical fiber

H. Bulut, Y. Pandir, S. Tuluce Demiray, Exact solutions of nonlinear Schrödinger’s equation with dual power-law nonlinearity by extended trial equation method. Waves Random Complex Media 24(4), 439–451 (2014)

Article  ADS  MathSciNet  MATH  Google Scholar 

M. Ozisik, A. Secer, M. Bayram, H. Aydin, An encyclopedia of Kudryashov’s integrability approaches applicable to optoelectronic devices. Optik (Stuttg), 265 (2022). https://doi.org/10.1016/j.ijleo.2022.169499

M.A.S. Murad, H.F. Ismael, T.A. Sulaiman, H. Bulut, Analysis of optical solutions of higher-order nonlinear Schrödinger equation by the new Kudryashov and Bernoulli’s equation approaches. Opt Quantum Electron 56(1) (2024). https://doi.org/10.1007/s11082-023-05612-z

E. Parasuraman, Stability of kink, anti kink and dark soliton solution of nonlocal Kundu–Eckhaus equation. Optik (Stuttg), 290 (2023). https://doi.org/10.1016/j.ijleo.2023.171279

T.A. Khalil, N. Badra, H.M. Ahmed, W.B. Rabie, Optical solitons and other solutions for coupled system of nonlinear Biswas–Milovic equation with Kudryashov’s law of refractive index by Jacobi elliptic function expansion method. Optik (Stuttg), 253 (2022). https://doi.org/10.1016/j.ijleo.2021.168540

K.K. Al-Kalbani, K.S. Al-Ghafri, E.V. Krishnan, A. Biswas, Pure-cubic optical solitons by Jacobi’s elliptic function approach. Optik (Stuttg), 243 (2021). https://doi.org/10.1016/j.ijleo.2021.167404

A.H. Arnous, A. Biswas, A.H. Kara, Y. Yıldırım, C.M.B. Dragomir, A. Asiri, Optical solitons and conservation laws for the concatenation model in the absence of self-phase modulation. J. Opt. (India) (2023). https://doi.org/10.1007/s12596-023-01392-7

M. Ozisik et al., Investigation of optical soliton solutions of higher-order nonlinear Schrödinger equation having Kudryashov nonlinear refractive index. Optik (Stuttg) 274, 170548 (2023). https://doi.org/10.1016/j.ijleo.2023.170548

Article  Google Scholar 

H.U. Rehman, A.R. Seadawy, S. Razzaq, S.T.R. Rizvi, Optical fiber application of the improved generalized Riccati equation mapping method to the perturbed nonlinear Chen-Lee-Liu dynamical equation. Optik (Stuttg) 290 (2023). https://doi.org/10.1016/j.ijleo.2023.171309

W.A. Faridi, G.H. Tipu, Z. Myrzakulova, R. Myrzakulov, L. Akinyemi, Formation of optical soliton wave profiles of Shynaray-IIA equation via two improved techniques: a comparative study. Opt Quantum Electron 56(1) (2024). https://doi.org/10.1007/s11082-023-05699-4

M.A. Rahman et al. Mathematical analysis of some new adequate broad-ranging soliton solutions of nonlinear models through the recent technique. Partial Differ. Equ. Appl. Math. 9 (2024). https://doi.org/10.1016/j.padiff.2024.100634

W. Razzaq, A. Zafar, H.M. Ahmed, W.B. Rabie, Construction of solitons and other wave solutions for generalized Kudryashov’s equation with truncated M-fractional derivative using two analytical approaches. Int. J. Appl. Comput. Math. 10(1) (2024). https://doi.org/10.1007/s40819-023-01660-x

A.H. Ganie et al. New investigation of the analytical behaviors for some nonlinear PDEs in mathematical physics and modern engineering. Partial Differ. Equ. Appl. Math. 9 (2024). https://doi.org/10.1016/j.padiff.2023.100608

S. Tarla, K.K. Ali, R. Yilmazer, Newly modified unified auxiliary equation method and its applications. Optik (Stuttg) 269 (2022). https://doi.org/10.1016/j.ijleo.2022.169880

O. González-Gaxiola, A. Biswas, M.R. Belic, Optical soliton perturbation of Fokas–Lenells equation by the Laplace-Adomian decomposition algorithm. J. Eur. Opt. Soc. 15(1) (2019). https://doi.org/10.1186/s41476-019-0111-6

O. González-Gaxiola, A. Biswas, Y. Yildirim, A.S. Alshomrani, Bright optical solitons for the concatenation model with power-law nonlinearity: Laplace-Adomian decomposition. Contemp. Math., pp. 1234–1248 (2023)

K.S. Al-Ghafri, E.V. Krishnan, A. Biswas, Cubic-quartic optical soliton perturbation and modulation instability analysis in polarization-controlled fibers for Fokas–Lenells equation. J. Eur. Opt. Soc.-Rapid Publ. 18(2) (2022). https://doi.org/10.1051/jeos/2022008

A.H. Arnous et al., Optical solitons and conservation laws for the concatenation model with spatio-temporal dispersion (internet traffic regulation). J. Eur. Opt. Soc.-Rapid Publ. 19(2) (2023). https://doi.org/10.1051/jeos/2023031

A.H. Arnous, A. Biswas, Y. Yildirim, A.S. Alshomrani, Stochastic perturbation of optical solitons for the concatenation model with power-law of self-phase modulation having multiplicative white noise, Contemp. Math. pp. 567–589 (2024)

E.M.E. Zayed, A.H. Arnous, A. Biswas, Y. Yıldırım, A. Asiri, Optical solitons for the concatenation model with multiplicative white noise. J. Opt. 53(4), 3098–3107 (2024)

Article  Google Scholar 

M.-Y. Wang, A. Biswas, Y. Yildirim, A.S. Alshomrani, Optical solitons for the dispersive concatenation model with power-law nonlinearity by the complete discriminant approach. Contemp. Math. pp. 1249–1259 (2023)

N.M. Elsonbaty, N.M. Badra, H.M. Ahmed, S. Alkhatib, A.M. Elsherbeny, New visions of optical soliton to a class of generalized nonlinear Schrödinger equation with triple refractive index and non-local nonlinearity. Ain Shams Eng. J. (2024). https://doi.org/10.1016/j.asej.2024.102641

A.R. Adem, A. Biswas, Y. Yildirim, A. Asiri, Implicit quiescent optical solitons for the dispersive concatenation model with nonlinear chromatic dispersion by lie symmetry. Contemp. Math. (Singapore) 4(4), 666–674 (2023). https://doi.org/10.37256/cm.4420233575

Article  Google Scholar 

A.J.M. Jawad, A. Biswas, Y. Yıldırım, A.S. Alshomrani, A fresh perspective on the concatenation model in optical fibers with Kerr law of self-phase modulation. Eng. Sci. Technol. pp. 195–208 (2024)

A.A. Al Qarni, A.M. Bodaqah, A.S.H.F. Mohammed, A.A. Alshaery, H.O. Bakodah, A. Biswas, Cubic-quartic optical solitons for Lakshmanan–Porsezian-Daniel equation by the improved Adomian decomposition scheme. Ukr. J. Phys. Opt. 23(4), 228–242 (2022). https://doi.org/10.3116/16091833/23/4/228/2022

Article  Google Scholar 

L.H. Zhang, J.G. Si, New soliton and periodic solutions of (1 + 2)-dimensional nonlinear Schrödinger equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 15(10), 2747–2754 (2010). https://doi.org/10.1016/j.cnsns.2009.10.028

Article  ADS  MathSciNet  MATH  Google Scholar 

A.A. Al Qarni, A.M. Bodaqah, A.S.H.F. Mohammed, A.A. Alshaery, H.O. Bakodah, Dark and singular cubic–quartic optical solitons with Lakshmanan–Porsezian–Daniel equation by the improved Adomian decomposition scheme. Ukrainian J. Phys. Opt. 24(1) (2023)

N. Jihad, M. Abd Almuhsan, Evaluation of impairment mitigations for optical fiber communications using dispersion compensation techniques. Rafidain J. Eng. Sci. 1(1), 81–92 (2023)

Article  Google Scholar 

A.H. Arnous et al. Optical solitons and conservation laws for the concatenation model: power-law nonlinearity. Ain Shams Eng. J. 15(2) (2024). https://doi.org/10.1016/j.asej.2023.102381

E.M.E. Zayed, K.A. Gepreel, R.M.A. Shohib, M.E.M. Alngar, Y. Yıldırım, Optical solitons for the perturbed Biswas–Milovic equation with Kudryashov’s law of refractive index by the unified auxiliary equation method. Optik (Stuttg), 230 (2021). https://doi.org/10.1016/j.ijleo.2021.166286

N.A. Kudryashov, Optical solitons of the generalized nonlinear Schrödinger equation with Kerr nonlinearity and dispersion of unrestricted order. Mathematics 10(18) (2022). https://doi.org/10.3390/math10183409

N.A. Kudryashov, Model of propagation pulses in an optical fiber with a new law of refractive indices. Optik (Stuttg), 248 (2021). https://doi.org/10.1016/j.ijleo.2021.168160

A.R. Adem, A. Biswas, Y. Yildirim, A. Asiri, Implicit quiescent optical solitons for the dispersive concatenation model with nonlinear chromatic dispersion by lie symmetry. Contemp. Math. (Singapore) 4(4), 666–674 (2023). https://doi.org/10.37256/cm.4420233575

Article  Google Scholar 

A.J.M. Jawad, M.J. Abu-AlShaeer, Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities by two methods. Al-Rafidain J. Eng. Sci. 1(1), 1–8 (2023)

Article  Google Scholar 

A. Jawad, A. Biswas, Solutions of resonant nonlinear Schrödinger’s equation with exotic non-Kerr law nonlinearities. Al-Rafidain J. Eng. Sci. pp. 43–50 (2024)

E.M.E. Zayed et al., Dynamical system of optical soliton parameters by variational principle (super-Gaussian and super-sech pulses). J. Eur. Opt. Soc.-Rapid Publ. 19(2) (2023). https://doi.org/10.1051/jeos/2023035

A.H. Arnous, A. Biswas, A.H. Kara, Y. Yıldırım, A. Asiri, Optical solitons and conservation laws for the dispersive concatenation model with power-law nonlinearity. J. Opt. pp. 1–8 (2023)

L. Tang, A. Biswas, Y. Yildirim, A. Asiri, Bifurcation analysis and chaotic behavior of the concatenation model with power-law nonlinearity. Contemp. Math., pp. 1014–1025 (2023)

A.H. Arnous, M. Mirzazadeh, A. Biswas, Y. Yıldırım, H. Triki, A. Asiri, A wide spectrum of optical solitons for the dispersive concatenation model. J. Opt. pp. 1–27 (2023)

A. Biswas, J. Vega-Guzmán, Y. Yildirim, A. Asiri, Optical solitons for the dispersive concatenation model: undetermined coefficients. Contemp. Math., pp. 951–961 (2023)

Z. Li, E. Hussain, Qualitative analysis and optical solitons for the (1+1)-dimensional Biswas–Milovic equation with parabolic law and nonlocal nonlinearity. Results Phys, 56 (2024). https://doi.org/10.1016/j.rinp.2023.107304

E.M.E. Zayed et al. Highly dispersive optical solitons in fiber Bragg gratings for stochastic Lakshmanan–Porsezian–Daniel equation with spatio-temporal dispersion and multiplicative white noise. Results Phys. 55 (2023). https://doi.org/10.1016/j.rinp.2023.107177

R. Ramaswamy, E.S. El-Shazly, M.S. Abdel Latif, A. Elsonbaty, A.H. Abdel Kader, Exact optical solitons for generalized Kudryashov’s equation by lie symmetry method. J. Math. 2023 (2023). https://doi.org/10.1155/2023/2685547

N.A. Kudryashov, A generalized model for description of propagation pulses in optical fiber. Optik (Stuttg) 189, 42–52 (2019). https://doi.org/10.1016/j.ijleo.2019.05.069

Article  Google Scholar 

K.K. Ali, A. Zabihi, H. Rezazadeh, R. Ansari, M. Inc, Optical soliton with Kudryashov’s equation via sine-Gordon expansion and Kudryashov methods. Opt. Quantum Electron. 53(7) (2021). https://doi.org/10.1007/s11082-021-02998-6

E.M.E. Zayed, M.E.M. Alngar, Optical soliton solutions for the generalized Kudryashov equation of propagation pulse in optical fiber with power nonlinearities by three integration algorithms. Math. Methods Appl. Sci. 44(1), 315–324 (2021). https://doi.org/10.1002/mma.6736

Article  ADS  MathSciNet  MATH  Google Scholar 

S. Kumar et al., Optical solitons with Kudryashov’s equation by lie symmetry analysis. Phys. Wave Phenomena 28(3), 299–304 (2020). https://doi.org/10.3103/S1541308X20030127

Article  ADS  MathSciNet  Google Scholar 

K.K. Ali, Abundant optical soliton solutions to the Kudryashov equation and its modulation instability analysis. Opt. Quantum Electron 56(1) (2024). https://doi.org/10.1007/s11082-023-05653-4

W.-X. Ma, M. Chen, Direct search for exact solutions to the nonlinear Schröedinger equation. (2009) [Online]. http://arxiv.org/abs/0909.3330

K.S. Al-Ghafri, M. Sankar, E.V. Krishnan, A. Biswas, A. Asiri, Chirped gap solitons with Kudryashov’s law of self-phase modulation having dispersive reflectivity. J. Eur. Opt. Soc.-Rapid Publ. 19(2) (2023). https://doi.org/10.1051/jeos/2023038

L. Bin, Z. Hong-Qing, A new variable coefficient algebraic method and non-travelling wave solutions of nonlinear equations. Chin. Phys. B 17(11), 3974 (2008)

Article  ADS  Google Scholar 

E.M.E. Zayed, R.M.A. Shohib, Solitons and other solutions for two higher-order nonlinear wave equations of KdV type using the unified auxiliary equation method. Acta Phys. Pol., A 136(1), 33–41 (2019). https://doi.org/10.12693/APhysPolA.136.33

Article  ADS  Google Scholar 

A.A. Elmandouh, M.E. Elbrolosy, Integrability, variational principle, bifurcation, and new wave solutions for the ivancevic option pricing model. J. Math. 2022 (2022). https://doi.org/10.1155/2022/9354856

K.K. Ali, W.A. Faridi, S. Tarla, Phase trajectories and Chaos theory for dynamical demonstration and explicit propagating wave formation. Chaos Solitons Fract. 182, 114766 (2024). https://doi.org/10.1016/j.chaos.2024.114766

Article  MathSciNet  Google Scholar 

V. Nemytskii, V. Stepanov, Qualitative Theory of Differential Equations (Dover Publications, New York, 1989)

Google Scholar 

E.L. Rees, Graphical Discussion of the Roots of a Quartic Equation (1922)

A. Ali, J. Ahmad, S. Javed, Shafqat-Ur-Rehman, Exact soliton solutions and stability analysis to (3 + 1)-dimensional nonlinear Schrödinger model. Alex. Eng. J. 76, 747–756 (2023). https://doi.org/10.1016/j.aej.2023.06.067

A.P. Shakir, H.F. Ismael, H.M. Baskonus, Novel optical solutions to the dispersive extended Schrödinger equation arise in nonlinear optics via two analytical methods. Opt. Quantum Electron. 56(5) (2024). https://doi.org/10.1007/s11082-024-06675-2

Comments (0)

No login
gif