Antimicrobial and molluscicidal activities of Egyptian soil-derived Streptomyces rochei

Ababutain IM, Aziz ZKA, Al-Meshhen NA (2013) Optimization of environmental and nutritional conditions to improve growth and antibiotic productions by Streptomyces sp. isolated from Saudi Arabia soil. Int Res J Microbiol 4(8):179–187. https://doi.org/10.14303/irjm.2013.042

Article  Google Scholar 

Abdel-Motleb A, Ghareeb MA, Abdel-Aziz MS, El-Shazly MAM (2022) Chemical characterization, antimicrobial, antioxidant and larvicidal activities of certain fungal extracts. J Adv Biotechnol Exp Ther 5(3):456–472. https://doi.org/10.5455/jabet.2022.d128

Article  Google Scholar 

Abdel-Wareth M, Ghareeb MA, Abdel-Aziz MS, El-Hagrassi MA (2019) Snailicidal, antimicrobial, antioxidant and anticancer activities of Beauveria bassiana, Metarhizium anisopliae and Paecilomyces Lilacinus fungal extracts. Egypt J Aquat Biol Fish 23(2):195–212. https://doi.org/10.21608/ejabf.2019.30550

Article  Google Scholar 

Abou El-Enain M, Abed IN, Helal NE, Abdelkhalek ES, Suleiman E, Safwat WA, N., Yosri M (2023) Eco-friendly biosynthesis of Ag-NPs by Streptomyces griseus with Anti- Candida albicans and antitumor activity. Recent Adv Anti-Infect Drug Discov. https://doi.org/10.2174/2772434418666230427165013

Article  Google Scholar 

Abou-Elnour BM, El-Emam MA, Mahmoud MB, Ibrahim WL, Youssef AA (2015) Alternations in parasitological, biochemical and molecular parameters of Biomphalaria Alexandrina snails, intermediate host of Schistosoma mansoni, induced post exposure to the proposed snail biocontrol agent Phasmarhabditis hermaphrodita nematode. Asian Pac J Trop Dis 5(12):957–963. https://doi.org/10.1016/S2222-1808(15)60964-1

Article  CAS  Google Scholar 

Abouel-Hassan AA, Zidan ZH, Massoud AA, Eldeeb FA (2000) Effect of sublethal concentrations of niclosamide snailicide on the biotic and survival potential of Biomphalaria snails. Arab Univ J Agric Sci 8(4):905–921

Google Scholar 

Ahmad MS, El-Gendy AO, Ahmed RR, Hassan M, El-Kabbany HM, Merdash AG (2017) Exploring the antimicrobial and antitumor potentials of Streptomyces sp. AGM12-1 isolated from Egyptian soil. Front Microbiol 8:438. https://doi.org/10.3389/fmicb.2017.00438

Article  PubMed  PubMed Central  Google Scholar 

Al-Agamy MH, Alhuzani MR, Kelany MS, Hamed MM (2021) Production and partial characterization of α-amylase enzyme from marine actinomycetes. Biomed Res Int 2021:1–15. https://doi.org/10.1155/2021/5289848

Article  CAS  Google Scholar 

Al-Ghazali LH, Omran RAB (2017) Optimization production conditions of antibacterial metabolite from Streptomyces Sp. Asian J Pharm Clin Res 10(9):386–391. https://doi.org/10.22159/ajpcr.2017.v10i9.19243

Article  CAS  Google Scholar 

Al-Mathal EM, Fouad MA (2006) Effect of Commiphora molmol on adults, egg masses and egg-deposition of Biomphalaria Arabica under laboratory conditions. J Egypt Soc Parasitol 36(1):305–314. https://europepmc.org/article/med/16605120

PubMed  Google Scholar 

Atlas M (2004) Handbook of Microbiological media. CRC. https://doi.org/10.1201/9781420039726

Augustine SK, Bhavsar SP, Kapadnis BP (2005) Production of a growth-dependent metabolite active against dermatophytes by Streptomyces rochei AK 39. Indian J Med Res 121(3):164–170. https://www.researchgate.net/publication/362501792

CAS  PubMed  Google Scholar 

Boissier J, Mone H (2000) Experimental observations on the sex ratio of adult schistosoma mansoni, with comments on the natural male bias. Parasitol 121:379–383

Google Scholar 

Cando LFT, Perias GAS, Tantengco OAG, Dispo MD, Ceriales JA, Girasol MJG, Tabios IKB (2022) The global prevalence of Schistosoma mansoni, S. japonicum and S. haematobium in pregnant women: a systematic review and meta-analysis. Trop Med Infect Dis 7(11):354. https://doi.org/10.3390/tropicalmed7110354

Chaffai AH, Ismaïl MI (2010) Deleterious effects of estrogenic endocrine disruptors on marine organisms: histological observed effects and some novel useful monitoring bioassays. J Persian Gulf 1(2):23–32

Google Scholar 

Clinical and Laboratory Standards Institute (2020) M100 performance standards for antimicrobial susceptibility testing: a CLSI supplement for global application, 30th ed. https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf

Dar MS, Ahmad I (2024) Screening and evaluation of antibacterial active strains of actinomycetes isolated from Northern Indian soil for biofilm Inhibition against selected ESKAPE pathogens. J Umm Al-Qura Univ Appl Sci 1–16. https://doi.org/10.1007/s43994-024-00164-8

De Oliveira EJ, Rabinovitch L, Monnerat RG, Passos LKJ, Zahner V (2004) Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Appl Environ Microbiol 70(11):6657–6664. https://doi.org/10.1128/AEM.70.11.6657-6664.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Simeis C, Serra S (2021) Actinomycetes: a never-ending source of bioactive compounds—an overview on antibiotics production. Antibiotics 10(5):483. https://doi.org/10.3390/antibiotics10050483

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhole NP, Dar MA, Pandit RS (2021) Recent advances in bioprospection and applications of Chitinolytic bacteria for valorization of waste Chitin. Arch Microbiol 203(5):1953–1969. https://doi.org/10.1007/s00203-021-02234-5

Article  CAS  PubMed  Google Scholar 

Djinni I, Djoudi W, Boumezoued C, Barchiche H, Souagui S, Kecha M, Mancini I (2023) Statistical medium optimization for the production of anti-methicillin-resistant Staphylococcus aureus metabolites from a coal-mining-soil-derived Streptomyces rochei CMB47. Fermentation 9(4):381. https://doi.org/10.3390/fermentation9040381

Duval D, Galinier R, Mouahid G, Toulza E, Allienne F, Portela J, Gourbal B (2015) A novel bacterial pathogen of Biomphalaria glabrata: a potential weapon for schistosomiasis control? PLoS Negl Trop Dis 9(2):e0003489. https://doi.org/10.1371/journal.pntd.0003489

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Abyad MS, El-Sayed MA, El-Shanshoury AR, El-Sabbagh SM (1993) Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp. Plant Soil 149:185–195. https://doi.org/10.1007/BF00016608

Article  Google Scholar 

El-Akshar EA, El-Meihy RM, Tewfike TA, Al Husnain L, Alkahtani MD, Bouqellah NA, Abou-Aly HE (2024) Endophytic chitinase- and antifungal-metabolites-producing actinobacteria for biological control of cucumber damping-off disease. J Plant Pathol 107(1):469–490. https://doi.org/10.1007/s42161-024-01790-1

Article  Google Scholar 

El-Bolkiny Y, Rizk ES, El-Ansary A (2000) Effect of diethyldithiocarbamate on some biological and physiological parameters of Biomphalaria Alexandrina snails. Egypt J Aquat Biol Fish 4(2):157–181. https://doi.org/10.21608/ejabf.2000.1666

Article  Google Scholar 

El-Emam MA, Ebeid FA (1989) Effect of Schistosoma mansoni infection, starvation and molluscicides on acid phosphatase, transaminases and total protein in tissues and hemolymph of Biomphalaria Alexandrina. J Egypt Soc Parasitol 19(1):139–147. https://europepmc.org/article/med/2708850

CAS  PubMed  Google Scholar 

El-Mahdy OM, Mohamed HI, Mogazy AM (2021) Biosorption effect of Aspergillus Niger and penicillium Chrysosporium for Cd- and Pb-contaminated soil and their physiological effects on vicia Faba L. Environ Sci Pollut Res Int 28(47):67608–67631. https://doi.org/10.1007/s11356-021-15382-4

Article  CAS  PubMed  Google Scholar 

Elabbasy EG, Hussain AA, Ashour SM, Ibrahim SY (2021) Antifungal activity of Streptomyces canescens MH7 isolated from Mangrove sediment against some dermatophytes. J Sci Res Sci 38(2):36–59. https://doi.org/10.21608/jsrs.2021.210676

Article  Google Scholar 

Evangelista-Martínez Z, Contreras-Leal EA, Corona-Pedraza LF, Gastélum-Martínez É (2020) Biocontrol potential of Streptomyces sp. CACIS-1.5 CA against phytopathogenic fungi causing post-harvest fruit diseases. Egypt J Biol Pest Control 30(1):117. https://doi.org/10.1186/s41938-020-00319-9

Article  Google Scholar 

Fan Z, Wang L, Qin Y, Li P (2023) Activity of chitin/chitosan/chitosan oligosaccharide against plant pathogenic nematodes and potential modes of application in agriculture: a review. Carbohydr Polym 306:120592. https://doi.org/10.1016/j.carbpol.2023.120592

Article  CAS  PubMed  Google Scholar 

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Article  PubMed  Google Scholar 

Gharieb MM, Rizk A, Elfeky N. Anticandidal activity of a wild Bacillus subtilis NAM against clinical isolates of pathogenic Candida albicans. Ann Microbiol 74:23 (2024). https://doi.org/10.1186/s13213-024-01764-9

Girma A, Aemiro A (2022) Evaluation of soil Streptomyces isolates from north-western Ethiopia as potential inhibitors against spoilage and food-borne bacterial pathogens. J Chem 2022(1):e5547406. https://doi.org/10.1155/2022/5547406

Article  CAS  Google Scholar 

Ibrahim AM, Saleh HA, Zayed KM, Ghazy M (2021) Colchicum Ritchii flower: a new molluscicidal plant for Biomphalaria Alexandrina snails and the infective stages of Schistosoma mansoni. Molluscan Res 41(4):289–297. https://doi.org/10.1080/13235818.2021.2003982

Article  Google Scholar 

Kennedy MJ, Krouse DS (1999) Strategies for improving fermentation-medium performance: a review. J Ind Microbiol Biotechnol 23(6):456–475. https://doi.org/10.1038/sj.jim.2900755

Article  CAS  Google Scholar 

King CH, Sutherland LJ, Bertsch D (2015) Systematic review and meta-analysis of the impact of chemical-based mollusciciding for control of Schistosoma mansoni and S. haematobium transmission. PLoS Negl Trop Dis 9(12):e0004290. https://doi.org/10.1371/journal.pntd.0004290

Article  PubMed  PubMed Central  Google Scholar 

Lajtner J, Erben R (1996) Histopathological effects of phenol on the digestive gland of Amphimelania Holandri fér. (Gastropoda, Prosobranchia). Bull Environ Contam Toxicol 57(3):458–464. https://doi.org/10.1007/s001289900212

Article  CAS 

Comments (0)

No login
gif