Treponema pallidum inhibits CD4+ T-cell proliferation through METAP2: insights from Mendelian randomization analysis

Ai C, Kong L (2018) CGPS: a machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways. J Genet genom = Yi Chuan Xue Bao 45:489–504. https://doi.org/10.1016/j.jgg.2018.08.002

Article  PubMed  Google Scholar 

Bartleson JM, Viehmann Milam AA, Donermeyer DL, Horvath S, Xia Y, Egawa T, Allen PM (2020) Strength of tonic T cell receptor signaling instructs T follicular helper cell-fate decisions. Nat Immunol 21:1384–1396. https://doi.org/10.1038/s41590-020-0781-7

Article  PubMed  PubMed Central  CAS  Google Scholar 

Birney E (2022) Mendelian randomization. Cold Spring Harbor Perspect Med 12. https://doi.org/10.1101/cshperspect.a041302

Datta R, Choudhury P, Bhattacharya M, Soto Leon F, Zhou Y, Datta B (2001) Protection of translation initiation factor eIF2 phosphorylation correlates with eIF2-associated glycoprotein p67 levels and requires the lysine-rich domain I of p67. Biochimie 83:919–931. https://doi.org/10.1016/s0300-9084(01)01344-x

Article  PubMed  CAS  Google Scholar 

FinnGen (2024) Documentation of R10 release. https://finngen.gitbook.io/documentation/v/r10/

Giglione C, Fieulaine S, Meinnel T (2015) N-terminal protein modifications: bringing back into play the ribosome. Biochimie 114:134–146. https://doi.org/10.1016/j.biochi.2014.11.008

Article  PubMed  CAS  Google Scholar 

Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP (2023) PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 22:138. https://doi.org/10.1186/s12943-023-01827-6

Article  PubMed  PubMed Central  CAS  Google Scholar 

Goya Grocin A, Kallemeijn WW, Tate EW (2021) Targeting methionine aminopeptidase 2 in cancer, obesity, and autoimmunity. Trends Pharmacol Sci 42:870–882. https://doi.org/10.1016/j.tips.2021.07.004

Article  PubMed  CAS  Google Scholar 

Hamill MM, Ghanem KG, Tuddenham S (2024) State-of-the-art review: neurosyphilis. Clin Infect Dis Off Publ Infect Dis Soc Am 78:e57–e68. https://doi.org/10.1093/cid/ciad437

Article  CAS  Google Scholar 

Hamilton F, Schurz H, Yates TA, Gilchrist JJ, Möller M, Naranbhai V, Ghazal P, Timpson NJ, Parks T, Pollara G (2025) Altered IL-6 signalling and risk of tuberculosis: a multi-ancestry Mendelian randomisation study. Lancet Microbe 6:100922. https://doi.org/10.1016/s2666-5247(24)00162-9

Article  PubMed  Google Scholar 

Hu YT, Wu KX, Wang XT, Zhao YY, Jiang XY, Liu D, Tong ML, Liu LL (2023) Treponema pallidum promoted microglia apoptosis and prevented itself from clearing by human microglia via blocking autophagic flux. PLoS Pathog 19:e1011594. https://doi.org/10.1371/journal.ppat.1011594

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jafri AJA, Arfuzir NNN, Lambuk L, Iezhitsa I, Agarwal R, Agarwal P, Razali N, Krasilnikova A, Kharitonova M, Demidov V, Serebryansky E, Skalny A, Spasov A, Yusof APM, Ismail NM (2017) Protective effect of magnesium acetyltaurate against NMDA-induced retinal damage involves restoration of minerals and trace elements homeostasis. J Trace Elem Med Biol Organ Soc Miner Trace Elem (GMS) 39:147–154. https://doi.org/10.1016/j.jtemb.2016.09.005

Article  CAS  Google Scholar 

Leader BT, Godornes C, VanVoorhis WC, Lukehart SA (2007) CD4 + lymphocytes and gamma interferon predominate in local immune responses in early experimental syphilis. Infect Immun 75:3021–3026. https://doi.org/10.1128/iai.01973-06

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li W, Li S, Wang J, Yu M, Yang H, He Z, Tang Y, Liu J, Guo N, Xie D, Liu Z, Zheng K, Xu M, Wu Y (2023) The outer membrane protein Tp92 of Treponema pallidum delays human neutrophil apoptosis via the ERK, PI3K/Akt, and NF-κB pathways. Mol Microbiol 120:684–701. https://doi.org/10.1111/mmi.15164

Article  PubMed  CAS  Google Scholar 

Li J, Ma J, Liu M, Li M, Zhang M, Yin W, Wu M, Li X, Zhang Q, Zhang H, Zheng H, Mao C, Sun J, Wang W, Lyu W, Yue X, Weng W, Li J, Chen F, Zhu Y, Leng L (2024) Large-Scale proteome profiling identifies biomarkers associated with suspected neurosyphilis diagnosis. Adv Sci (Weinheim. Baden-Wurttemberg Germany) 11:e2307744. https://doi.org/10.1002/advs.202307744

Article  CAS  Google Scholar 

Liu LL, Zhu SG, Jiang XY, Ren J, Lin Y, Zhang NN, Tong ML, Zhang HL, Zheng WH, Fu HJ, Luo HJ, Lin LR, Yan JH, Yang TC (2017) LncRNA expression in CD4 + T cells in neurosyphilis patients. Front Cell Infect Microbiol 7:461. https://doi.org/10.3389/fcimb.2017.00461

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu Y, Chen J, Zhu X, Tang L, Luo X, Shi Y (2018) Role of miR–449b–3p in endometriosis via effects on endometrial stromal cell proliferation and angiogenesis. Mol Med Rep 18:3359–3365. https://doi.org/10.3892/mmr.2018.9341

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu LL, Lin Y, Chen W, Tong ML, Luo X, Lin LR, Zhang HL, Yan JH, Niu JJ, Yang TC (2019) Metabolite profiles of the cerebrospinal fluid in neurosyphilis patients determined by untargeted metabolomics analysis. Front NeuroSci 13:150. https://doi.org/10.3389/fnins.2019.00150

Article  PubMed  PubMed Central  Google Scholar 

Liu Z, Wang Y, Xu Z, Yuan S, Ou Y, Luo Z, Wen F, Liu J, Zhang J (2021) Analysis of CeRNA networks and identification of potential drug targets for drug-resistant leukemia cell K562/ADR. PeerJ 9:e11429. https://doi.org/10.7717/peerj.11429

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, Cheng Q, Luo P, Zhang Y, Han X (2023) Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther 8:200. https://doi.org/10.1038/s41392-023-01451-2

Article  CAS  Google Scholar 

Liu Z, Zhang X, Xiong S, Huang S, Ding X, Xu M, Yao J, Liu S, Zhao F (2024) Endothelial dysfunction of syphilis: pathogenesis. J Eur Acad Dermatol Venereol JEADV 38:1478–1490. https://doi.org/10.1111/jdv.19899

Article  CAS  Google Scholar 

Luo J, Yang H, Song BL (2020) Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 21:225–245. https://doi.org/10.1038/s41580-019-0190-7

Article  PubMed  CAS  Google Scholar 

Na N, Zhao D, Zhang J, Wu J, Miao B, Li H, Luo Y, Tang Z, Zhang W, Bellanti JA, Zheng SG (2020) Carbamylated erythropoietin regulates immune responses and promotes long-term kidney allograft survival through activation of PI3K/AKT signaling. Signal Transduct Target Ther 5:194. https://doi.org/10.1038/s41392-020-00232-5

Article  CAS  Google Scholar 

Neurosyphilis. N Engl J Med 381: 1789. https://doi.org/10.1056/NEJMx190030

Osier ND, Ziari M, Puccio AM, Poloyac S, Okonkwo DO, Minnigh MB, Beers SR, Conley YP (2019) Elevated cerebrospinal fluid concentrations of N-acetylaspartate correlate with poor outcome in a pilot study of severe brain trauma. Brain Inj 33:1364–1371. https://doi.org/10.1080/02699052.2019.1641743

Article  PubMed  PubMed Central  Google Scholar 

Paganoni S, Schwarzschild MA (2017) Urate as a marker of risk and progression of neurodegenerative disease. Neurotherapeutics: J Am Soc Exp Neurother 14:148–153. https://doi.org/10.1007/s13311-016-0497-4

Article  CAS  Google Scholar 

Panyard DJ, Kim KM, Darst BF, Deming YK, Zhong X, Wu Y, Kang H, Carlsson CM, Johnson SC, Asthana S, Engelman CD, Lu Q (2021) Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun Biol 4:63. https://doi.org/10.1038/s42003-020-01583-z

Article  CAS  Google Scholar 

Papadimitriou N, Dimou N, Tsilidis KK, Banbury B, Martin RM, Lewis SJ, Kazmi N, Robinson TM, Albanes D, Aleksandrova K, Berndt SI, Timothy Bishop D, Brenner H, Buchanan DD, Bueno-de-Mesquita B, Campbell PT, Castellví-Bel S, Chan AT, Chang-Claude J, Ellingjord-Dale M, Figueiredo JC, Gallinger SJ, Giles GG, Giovannucci E, Gruber SB, Gsur A, Hampe J, Hampel H, Harlid S, Harrison TA, Hoffmeister M, Hopper JL, Hsu L, María Huerta J, Huyghe JR, Jenkins MA, Keku TO, Kühn T, La Vecchia C, Le Marchand L, Li CI, Li L, Lindblom A, Lindor NM, Lynch B, Markowitz SD, Masala G, May AM, Milne R, Monninkhof E, Moreno L, Moreno V, Newcomb PA, Offit K, Perduca V, Pharoah PDP, Platz EA, Potter JD, Rennert G, Riboli E, Sánchez MJ, Schmit SL, Schoen RE, Severi G, Sieri S, Slattery ML, Song M, Tangen CM, Thibodeau SN, Travis RC, Trichopoulou A, Ulrich CM, van Duijnhoven FJB, Van Guelpen B, Vodicka P, White E, Wolk A, Woods MO, Wu AH, Peters U, Gunter MJ, Murphy N (2020) Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis. Nat Commun 11:597. https://doi.org/10.1038/s41467-020-14389-8

Article  PubMed  PubMed Central  CAS 

Comments (0)

No login
gif