Posterior parietal cortex activity during visually cued gait: a preliminary study

Beauchet O, Allali G, Annweiler C, Bridenbaugh S, Assal F, Kressig RW, Herrmann FR (2009) Gait variability among healthy adults: low and high Stride-to-Stride variability are both a reflection of gait stability. Gerontology 55(6):702–706. https://doi.org/10.1159/000235905

Article  PubMed  Google Scholar 

Beauchet O, Annweiler C, Celle S, Bartha R, Barthélémy J-C, Roche F (2014) Higher gait variability is associated with decreased parietal gray matter volume among healthy older adults. Brain Topogr 27(2):293–295. https://doi.org/10.1007/s10548-013-0293-y

Article  PubMed  Google Scholar 

Boas DA, Dale AM, Franceschini MA (2004) Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. Neuroimage, 23:S275-S288

Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44(13):2594–2606. https://doi.org/10.1016/j.neuropsychologia.2005.10.011

Article  PubMed  Google Scholar 

Chen M, Pillemer S, England S, Izzetoglu M, Mahoney JR, Holtzer R (2017) Neural correlates of obstacle negotiation in older adults: an fNIRS study. Gait Posture 58:130–135

PubMed  PubMed Central  Google Scholar 

Chen Y, Cao Z, Mao M, Sun W, Song Q, Mao D (2022) Increased cortical activation and enhanced functional connectivity in the prefrontal cortex ensure dynamic postural balance during dual-task obstacle negotiation in the older adults: a fNIRS study. Brain Cogn 163:105904

PubMed  Google Scholar 

Clark DJ (2015) Automaticity of walking: functional significance, mechanisms, measurement and rehabilitation strategies. Front Hum Neurosci 9:246. https://doi.org/10.3389/fnhum.2015.00246

Article  PubMed  PubMed Central  Google Scholar 

Cohen J (1988) Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587

Cooper R, Selb J, Gagnon L, Phillip D, Schytz HW, Iversen HK, Ashina M, Boas DA (2012) A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Front NeuroSci 6:147. https://doi.org/10.3389/fnins.2012.00147

Article  PubMed  PubMed Central  Google Scholar 

Corporaal SHA, Bruijn SM, Hoogkamer W, Chalavi S, Boisgontier MP, Duysens J, Swinnen SP, Gooijers J (2018) Different neural substrates for precision stepping and fast online step adjustments in youth. Brain Struct Function 223(4):2039–2053. https://doi.org/10.1007/s00429-017-1586-9

Article  Google Scholar 

Cui X, Bray S, Reiss AL (2010) Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. NeuroImage 49(4):3039–3046. https://doi.org/10.1016/j.neuroimage.2009.11.050

Article  PubMed  CAS  Google Scholar 

de Belli V, Orcioli-Silva D, Beretta VS, Vitório R, Zampier VC, Nóbrega-Sousa P, Gobbi LTB (2021) Prefrontal cortical activity during preferred and fast walking in young and older adults: an fNIRS study. Neuroscience 473:81–89

PubMed  CAS  Google Scholar 

Di Lorenzo R, Pirazzoli L, Blasi A, Bulgarelli C, Hakuno Y, Minagawa Y, Brigadoi S (2019) Recommendations for motion correction of infant fNIRS data applicable to multiple data sets and acquisition systems. NeuroImage 200:511–527. https://doi.org/10.1016/j.neuroimage.2019.06.056

Drew T, Marigold DS (2015) Taking the next step: cortical contributions to the control of locomotion. Curr Opin Neurobiol 33:25–33. https://doi.org/10.1016/j.conb.2015.01.011

Article  PubMed  CAS  Google Scholar 

Drew T, Fortier-Lebel N, Nakajima T (2023) Cortical contribution to visuomotor coordination in locomotion and reaching. Curr Opin Neurobiol 82:102755. https://doi.org/10.1016/j.conb.2023.102755

Article  PubMed  CAS  Google Scholar 

Ebaid D, Crewther SG (2019) Visual information processing in young and older adults. Front Aging Neurosci 11. https://www.frontiersin.org/articles/https://doi.org/10.3389/fnagi.2019.00116

Gao L, Wei Y, Wang Y, Wang G, Zhang Q, Zhang J, Chen X, Yan X (2022) Hybrid motion artifact detection and correction approach for functional near-infrared spectroscopy measurements. J Biomed Opt 27(2):025003. https://doi.org/10.1117/1.JBO.27.2.025003

Article  PubMed  PubMed Central  Google Scholar 

Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL (1998) Gait variability and basal ganglia disorders: stride-to‐stride variations of gait cycle timing in parkinson’s disease and huntington’s disease. Mov Disorders 13(3):428–437

CAS  Google Scholar 

Hausdorff JM, Rios DA, Edelberg HK (2001) Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil 82(8):1050–1056. https://doi.org/10.1053/apmr.2001.24893

Article  PubMed  CAS  Google Scholar 

Herwig U, Satrapi P, Schönfeldt-Lecuona C (2003) Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16:95–99

PubMed  Google Scholar 

Homan RW, Herman J, Purdy P (1987) Cerebral location of international 10–20 system electrode placement. Electroencephalogr Clin Neurophysiol 66(4):376–382

PubMed  CAS  Google Scholar 

Hoogkamer W, Potocanac Z, Duysens J (2015) Quick foot placement adjustments during gait: direction matters. Exp Brain Res 233(12):3349–3357. https://doi.org/10.1007/s00221-015-4401-y

Article  PubMed  Google Scholar 

Hoogkamer W, Potocanac Z, Van Calenbergh F, Duysens J (2017) Quick foot placement adjustments during gait are less accurate in individuals with focal cerebellar lesions. Gait Posture 58:390–393

PubMed  Google Scholar 

Huppert TJ, Diamond SG, Franceschini MA, Boas DA (2009) HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt 48(10):D280–D298. https://doi.org/10.1364/AO.48.00D280

Article  PubMed  PubMed Central  Google Scholar 

Koenraadt KLM, Roelofsen EGJ, Duysens J, Keijsers NLW (2014) Cortical control of normal gait and precision stepping: an fNIRS study. NeuroImage 85:415–422. https://doi.org/10.1016/j.neuroimage.2013.04.070

Article  PubMed  Google Scholar 

Lau TM, Gwin JT, Ferris DP (2014) Walking reduces sensorimotor network connectivity compared to standing. J Neuroeng Rehabil 11(1):1–10. https://doi.org/10.1186/1743-0003-11-14

Article  Google Scholar 

Le DT, Tsuyuhara M, Kuwamura H, Kitano K, Nguyen TD, Nguyen D, Fujita T, Watanabe N, Nishijo T, Mihara H, M., Urakawa S (2023) Regional activity and effective connectivity within the frontoparietal network during precision walking with visual cueing: an fNIRS study. Cereb Cortex 33(22):11157–11169. https://doi.org/10.1093/cercor/bhad354

Article  PubMed  Google Scholar 

Liu C, Downey RJ, Salminen JS, Rojas A, Richer S, Pliner N, Hwang EM, Cruz-Almeida J, Manini Y, Hass TM, Seidler CJ, Clark RD, D. J., Ferris DP (2024) Electrical brain activity during human walking with parametric variations in terrain unevenness and walking speed. Imaging Neurosci 2:1–33. https://doi.org/10.1162/imag_a_00097

Article  CAS  Google Scholar 

Lo OY, Halko MA, Devaney KJ, Wayne PM, Lipsitz LA, Manor B (2021) Gait variability is associated with the strength of functional connectivity between the default and dorsal attention brain networks: evidence from multiple cohorts. J Gerontol Ser A 76(10):e328–e334. https://doi.org/10.1093/gerona/glab200

Article  Google Scholar 

Lord S, Howe T, Greenland J, Simpson L, Rochester L (2011) Gait variability in older adults: a structured review of testing protocol and clinimetric properties. Gait Posture 34(4):443–450. https://doi.org/10.1016/j.gaitpost.2011.07.010

Article  PubMed  Google Scholar 

Maki BE (1997) Gait changes in older adults: Predictors of falls or indicators of fear?? J Am Geriatr Soc 45(3):313–320. https://doi.org/10.1111/j.1532-5415.1997.tb00946.x

Article  PubMed  CAS  Google Scholar 

Marigold DS, Andujar J-E, Lajoie K, Drew T (2011) Chapter 6 - Motor planning of locomotor adaptations on the basis of vision: the role of the posterior parietal cortex. In Gossard JP, Dubuc R, Kolta A (Eds) Progress in Brain Research, 188: 83–100. https://doi.org/10.1016/B978-0-444-53825-3.00011-5

Martini DN, Mancini M, Antonellis P, McDonnell P, Vitorio R, Stuart S, King LA (2024) Prefrontal cortex activity during gait in people with persistent symptoms after concussion. Neurorehabilit Neural Repair 38(5):364–372. https://doi.org/10.1177/15459683241240423

Article  Google Scholar 

Matthis JS, Yates JL, Hayhoe MM (2018) Gaze and the control of foot placement when walking in natural terrain. Curr Biol 28(8):1224–1233e5. https://doi.org/10.1016/j.cub.2018.03.008

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mazaheri M, Hoogkamer W, Potocanac Z, Verschueren S, Roerdink M, Beek PJ, Peper CE, Duysens J (2015) Effects of aging and dual tasking on step adjustments to perturbations in visually cued walking. Exp Brain Res 233(12):3467–3474. https://doi.org/10.1007/s00221-015-4407-5

Article  PubMed  PubMed Central  Google Scholar 

Menon V, D’Esposito M (2022) The r

Comments (0)

No login
gif